On Wilson Bases in L2(ℝd)

A Wilson system is a collection of finite linear combinations of time frequency shifts of a square integrable function. It is well known that, starting from a tight Gabor frame for L2(R) with redundancy 2, one can construct an orthonormal Wilson basis for L2(R) whose generator is well localized in the time-frequency plane. In this paper we use the fact that a Wilson system is a shiftinvariant system to explore its relationship with Gabor systems. Specifically, we show that one can construct d-dimensional orthonormal Wilson bases starting from tight Gabor frames of redundancy 2k, where k = 1, 2, . . . , d. These results generalize most of the known results about the existence of orthonormal Wilson bases.

[1]  J. Benedetto,et al.  The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .

[2]  A. Ron,et al.  Weyl-Heisenberg Frames and Riesz Bases in L2(Rd). , 1994 .

[3]  A. Janssen The duality condition for Weyl-Heisenberg frames , 1998 .

[4]  Gitta Kutyniok,et al.  Wilson Bases for General Time-Frequency Lattices , 2005, SIAM J. Math. Anal..

[5]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[6]  Ingrid Daubechies,et al.  Two theorems on lattice expansions , 1993, IEEE Trans. Inf. Theory.

[7]  Marcin Bownik The Structure of Shift-Invariant Subspaces of L2(Rn)☆ , 2000 .

[8]  Kasso A. Okoudjou,et al.  Multi-window Gabor frames in amalgam spaces , 2011, 1108.6108.

[9]  I. Daubechies,et al.  A simple Wilson orthonormal basis with exponential decay , 1991 .

[10]  D. Walnut,et al.  Differentiation and the Balian-Low Theorem , 1994 .

[11]  A. Ron,et al.  Generalized Shift-Invariant Systems , 2005 .

[12]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[13]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .

[14]  Edwin Hewitt,et al.  Abstract Harmonic Analysis: Volume 1 , 1963 .

[15]  G. Folland Harmonic analysis in phase space , 1989 .

[16]  E. Brown,et al.  Generalized Wannier Functions and Effective Hamiltonians , 1968 .

[17]  Jakob Lemvig,et al.  Affine and quasi-affine frames for rational dilations , 2011 .

[18]  Kasso A. Okoudjou,et al.  Invertibility of the Gabor frame operator on the Wiener amalgam space , 2007, J. Approx. Theory.

[19]  Piotr Wojdyllo,et al.  Characterization of Wilson Systems for General Lattices , 2008, Int. J. Wavelets Multiresolution Inf. Process..

[20]  Demetrio Labate,et al.  A unified characterization of reproducing systems generated by a finite family, II , 2002 .

[21]  H. Feichtinger,et al.  A Banach space of test functions for Gabor analysis , 1998 .

[22]  K. Gröchenig,et al.  Wiener's lemma for twisted convolution and Gabor frames , 2003 .

[23]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[24]  M. D. Gosson Symplectic Methods in Harmonic Analysis and in Mathematical Physics , 2011 .

[25]  R. Balian Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .

[26]  G. Battle Heisenberg proof of the Balian-Low theorem , 1988 .

[27]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[28]  F. Low Complete sets of wave packets , 1985 .

[29]  Demetrio Labate,et al.  A unified characterization of reproducing systems generated by a finite family , 2002 .