On Wilson Bases in L2(ℝd)
暂无分享,去创建一个
Mads S. Jakobsen | Kasso A. Okoudjou | Jakob Lemvig | Marcin Bownik | Marcin Bownik | K. Okoudjou | J. Lemvig
[1] J. Benedetto,et al. The Theory of Multiresolution Analysis Frames and Applications to Filter Banks , 1998 .
[2] A. Ron,et al. Weyl-Heisenberg Frames and Riesz Bases in L2(Rd). , 1994 .
[3] A. Janssen. The duality condition for Weyl-Heisenberg frames , 1998 .
[4] Gitta Kutyniok,et al. Wilson Bases for General Time-Frequency Lattices , 2005, SIAM J. Math. Anal..
[5] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[6] Ingrid Daubechies,et al. Two theorems on lattice expansions , 1993, IEEE Trans. Inf. Theory.
[7] Marcin Bownik. The Structure of Shift-Invariant Subspaces of L2(Rn)☆ , 2000 .
[8] Kasso A. Okoudjou,et al. Multi-window Gabor frames in amalgam spaces , 2011, 1108.6108.
[9] I. Daubechies,et al. A simple Wilson orthonormal basis with exponential decay , 1991 .
[10] D. Walnut,et al. Differentiation and the Balian-Low Theorem , 1994 .
[11] A. Ron,et al. Generalized Shift-Invariant Systems , 2005 .
[12] A. Ron,et al. Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.
[13] W. Rudin,et al. Fourier Analysis on Groups. , 1965 .
[14] Edwin Hewitt,et al. Abstract Harmonic Analysis: Volume 1 , 1963 .
[15] G. Folland. Harmonic analysis in phase space , 1989 .
[16] E. Brown,et al. Generalized Wannier Functions and Effective Hamiltonians , 1968 .
[17] Jakob Lemvig,et al. Affine and quasi-affine frames for rational dilations , 2011 .
[18] Kasso A. Okoudjou,et al. Invertibility of the Gabor frame operator on the Wiener amalgam space , 2007, J. Approx. Theory.
[19] Piotr Wojdyllo,et al. Characterization of Wilson Systems for General Lattices , 2008, Int. J. Wavelets Multiresolution Inf. Process..
[20] Demetrio Labate,et al. A unified characterization of reproducing systems generated by a finite family, II , 2002 .
[21] H. Feichtinger,et al. A Banach space of test functions for Gabor analysis , 1998 .
[22] K. Gröchenig,et al. Wiener's lemma for twisted convolution and Gabor frames , 2003 .
[23] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[24] M. D. Gosson. Symplectic Methods in Harmonic Analysis and in Mathematical Physics , 2011 .
[25] R. Balian. Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .
[26] G. Battle. Heisenberg proof of the Balian-Low theorem , 1988 .
[27] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[28] F. Low. Complete sets of wave packets , 1985 .
[29] Demetrio Labate,et al. A unified characterization of reproducing systems generated by a finite family , 2002 .