Position Sensors for Nanopositioning

Position sensors with nanometer resolution are a key component of many precision imaging and fabrication machines. Since the sensor characteristics can define the linearity, resolution, and speed of the machine, the sensor performance is a foremost consideration. The first goal of this article is to define concise performance metrics and to provide exact and approximate expressions for error sources including nonlinearity, drift, and noise. The second goal is to review current position sensor technologies and to compare their performance. The sensors considered include: resistive, piezoelectric, and piezoresistive strain sensors; capacitive sensors; electrothermal sensors; eddy-current sensors; linear variable displacement transformers; interferometers; and linear encoders.

[1]  Haralampos Pozidis,et al.  High-bandwidth nanopositioner with magnetoresistance based position sensing , 2012 .

[2]  Chyan-Chyi Wu,et al.  Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution , 2007 .

[3]  Michael Curt Elwenspoek,et al.  2D-finite-element simulations for long-range capacitive position sensor , 2002 .

[4]  Hans Butler,et al.  Position Control in Lithographic Equipment [Applications of Control] , 2011, IEEE Control Systems.

[5]  Y. Gianchandani,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Micromachined 2d Positioner with Electrothermal Actuation and Sub-nanometer Capacitive Sensing , 2022 .

[6]  Lining Sun,et al.  Design of a precision compliant parallel positioner driven by dual piezoelectric actuators , 2007 .

[7]  M. Horton,et al.  Breaking the speed limit with atomic force microscopy , 2007 .

[8]  Karl Johan Åström,et al.  Design and Modeling of a High-Speed AFM-Scanner , 2007, IEEE Transactions on Control Systems Technology.

[9]  Andrew J. Fleming Estimating the resolution of nanopositioning systems from frequency domain data , 2012, 2012 IEEE International Conference on Robotics and Automation.

[10]  Qipeng Li,et al.  Novel displacement eddy current sensor with temperature compensation for electrohydraulic valves , 2005 .

[11]  Haris Pozidis,et al.  Nanopositioning for Probe-Based Data Storage , 2008 .

[12]  J. Sirohi,et al.  Fundamental Understanding of Piezoelectric Strain Sensors , 1999, Smart Structures.

[13]  G. Kovacs Micromachined Transducers Sourcebook , 1998 .

[14]  A.J. Fleming Nanopositioning System With Force Feedback for High-Performance Tracking and Vibration Control , 2010, IEEE/ASME Transactions on Mechatronics.

[15]  Andrew J. Fleming,et al.  Dual-Stage Vertical Feedback for High-Speed Scanning Probe Microscopy , 2011, IEEE Transactions on Control Systems Technology.

[16]  J. Dukes,et al.  A two-hundred-foot yardstick with graduations every microinch , 1991 .

[17]  S. Büttgenbach,et al.  Two-dimension fiber optic sensor for high-resolution and long-range linear measurements , 2010 .

[18]  L. Chassagne,et al.  A 2D nano-positioning system with sub-nanometric repeatability over the millimetre displacement range , 2007 .

[19]  Minyue Fu,et al.  Design and Control of a Rotary Dual-Stage Actuator Positioning System ✩ , 2011 .

[20]  D. Gillet,et al.  Strategy for the Control of a Dual-stage Nano-positioning System with a Single Metrology , 2006, 2006 IEEE Conference on Robotics, Automation and Mechatronics.

[21]  Walt Kester CHAPTER 4 – Sensor Signal Conditioning , 2005 .

[22]  Gijsbertus J.M. Krijnen,et al.  A micromachined capacitive incremental position sensor: part 2. Experimental assessment , 2006 .

[23]  A. A. Kuijpers,et al.  A micromachined capacitive incremental position sensor: part 1. Analysis and simulations , 2006 .

[24]  M Maarten Steinbuch,et al.  Identification, control and hysteresis compensation of a 3 DOF metrological AFM , 2009 .

[25]  S. O. Reza Moheimani,et al.  A Novel Piezoelectric Strain Sensor for Simultaneous Damping and Tracking Control of a High-Speed Nanopositioner , 2013, IEEE/ASME Transactions on Mechatronics.

[26]  Mime Kobayashi,et al.  Real-time imaging of DNA-streptavidin complex formation in solution using a high-speed atomic force microscope. , 2007, Ultramicroscopy.

[27]  David S. Nyce Linear position sensors , 2003 .

[28]  Xinghui Huang,et al.  Nanoprecision MEMS Capacitive Sensor for Linear and Rotational Positioning , 2009, Journal of Microelectromechanical Systems.

[29]  A. Panchula,et al.  Magnetically engineered spintronic sensors and memory , 2003, Proc. IEEE.

[30]  Wonkyu Moon,et al.  A new capacitive displacement sensor with high accuracy and long-range , 2005 .

[31]  S. Moheimani,et al.  Simultaneous Capacitive and Electrothermal Position Sensing in a Micromachined Nanopositioner , 2011, IEEE Electron Device Letters.

[32]  T. P. Chen,et al.  Recent developments in tip-based nanofabrication and its roadmap. , 2008, Journal of nanoscience and nanotechnology.

[33]  Andrew J Fleming,et al.  Note: a method for estimating the resolution of nanopositioning systems. , 2012, The Review of scientific instruments.

[34]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[35]  L.Y. Pao,et al.  A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes , 2007, 2007 American Control Conference.

[36]  M Steinbuch,et al.  Modeling and Waveform Optimization of a Nano-motion Piezo Stage , 2011, IEEE/ASME Transactions on Mechatronics.

[37]  Tien-Fu Lu,et al.  Position control of a 3 DOF compliant micro-motion stage , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[38]  Mervyn J Miles,et al.  Pushing the boundaries of local oxidation nanolithography: short timescales and high speeds. , 2008, Ultramicroscopy.

[39]  A. Sebastian,et al.  Control of MEMS-Based Scanning-Probe Data-Storage Devices , 2007, IEEE Transactions on Control Systems Technology.

[40]  B. Volland,et al.  High speed quasi-monolithic silicon/piezostack SPM scanning stage , 2012 .

[41]  Antoine Ferreira,et al.  Virtual reality and haptics for nanorobotics , 2006, IEEE Robotics & Automation Magazine.

[42]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[43]  Beth L. Pruitt,et al.  Review: Semiconductor Piezoresistance for Microsystems , 2009, Proceedings of the IEEE.

[44]  A. Sebastian,et al.  Modeling and Experimental Identification of Silicon Microheater Dynamics: A Systems Approach , 2008, Journal of Microelectromechanical Systems.

[45]  Rajpal Singh Sirohi Optical Methods of Measurement , 1999 .

[46]  S. O. Reza Moheimani,et al.  Sensor fusion for improved control of piezoelectric tube scanners , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[47]  Yong Zhu,et al.  Design, Modeling, and Control of a Micromachined Nanopositioner With Integrated Electrothermal Actuation and Sensing , 2011, Journal of Microelectromechanical Systems.

[48]  W. Häberle,et al.  Scanning probe microscopy based on magnetoresistive sensing , 2011, Nanotechnology.

[49]  Y. Yong,et al.  Atomic force microscopy with a 12-electrode piezoelectric tube scanner. , 2010, The Review of scientific instruments.

[50]  M. Tomizuka,et al.  Precision Positioning of Wafer Scanners Segmented Iterative Learning Control for Nonrepetitive Disturbances [Applications of Control] , 2007, IEEE Control Systems.

[51]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[52]  Abu Sebastian,et al.  Nanopositioning With Multiple Sensors: A Case Study in Data Storage , 2012, IEEE Transactions on Control Systems Technology.

[53]  A. Sebastian,et al.  Nanopositioning for probe-based data storage [Applications of Control] , 2008, IEEE Control Systems.

[54]  A. Stemmer,et al.  DESIGN NOTE: Sensors for closed-loop piezo control: strain gauges versus optical sensors , 2002 .

[55]  T. R. Hicks,et al.  The nanopositioning book , 1997 .

[56]  Larry K. Baxter,et al.  Capacitive Sensors: Design and Applications , 1996 .

[57]  Andrew J. Fleming,et al.  Integrated strain and force feedback for high-performance control of piezoelectric actuators , 2010 .

[58]  F. Allgöwer,et al.  Simulation of dynamics-coupling in piezoelectric tube scanners by reduced order finite element analysis. , 2008, The Review of scientific instruments.

[59]  Jonathan D. Adams,et al.  Components for high speed atomic force microscopy. , 2006, Ultramicroscopy.

[60]  R. Peters,et al.  Nanoposition sensors with superior linear response to position and unlimited travel ranges. , 2009, The Review of scientific instruments.

[61]  Robert K. Messenger,et al.  Piezoresistive Feedback Control of a MEMS Thermal Actuator , 2009, Journal of Microelectromechanical Systems.

[62]  G. Binnig,et al.  A micromechanical thermal displacement sensor with nanometre resolution , 2005 .

[63]  S. O. Reza Moheimani,et al.  Piezoelectric Transducers for Vibration Control and Damping , 2006 .

[64]  S. Fericean,et al.  New Noncontacting Inductive Analog Proximity and Inductive Linear Displacement Sensors for Industrial Automation , 2007, IEEE Sensors Journal.

[65]  M.V. Salapaka,et al.  Scanning Probe Microscopy , 2008, IEEE Control Systems.

[66]  G. Sommargren A new laser measurement system for precision metrology , 1987 .

[67]  Chih-Liang Chu,et al.  A novel long-travel piezoelectric-driven linear nanopositioning stage , 2006 .

[68]  A. Fleming,et al.  Bridging the gap between conventional and video-speed scanning probe microscopes. , 2010, Ultramicroscopy.

[69]  S. O. Reza Moheimani,et al.  Control orientated synthesis of high-performance piezoelectric shunt impedances for structural vibration control , 2005, IEEE Transactions on Control Systems Technology.

[70]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[71]  G. Borionetti,et al.  Atomic force microscopy: a powerful tool for surface defect and morphology inspection in semiconductor industry , 2004 .

[72]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[73]  Paul K. Hansma,et al.  Design and input-shaping control of a novel scanner for high-speed atomic force microscopy , 2008 .

[74]  Sumeet S Aphale,et al.  A New Method for Robust Damping and Tracking Control of Scanning Probe Microscope Positioning Stages , 2010, IEEE Transactions on Nanotechnology.

[75]  H. Butler,et al.  Position control in lithographic equipment , 2013 .

[76]  Yingfeng Shan,et al.  Low-Cost IR Reflective Sensors for Submicrolevel Position Measurement and Control , 2008, IEEE/ASME Transactions on Mechatronics.