THE IMMERSED FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS USING THE LAPLACE TRANSFORMATION IN TIME DISCRETIZATION
暂无分享,去创建一个
[1] Vidar Thomée,et al. A high order parallel method for time discretization of parabolic type equations based on Laplace transformation and quadrature , 2005 .
[2] Weiwei Sun,et al. Quadratic immersed finite element spaces and their approximation capabilities , 2006, Adv. Comput. Math..
[3] Hyoseop Lee,et al. Higher-order schemes for the Laplace transformation method for parabolic problems , 2011, Comput. Vis. Sci..
[4] Bo Li,et al. Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions , 2007, SIAM J. Numer. Anal..
[5] Craig C. Douglas,et al. Madpack: A Family of Abstract Multigrid or Multilevel Solvers , 1995 .
[6] Slimane Adjerid,et al. A p-th degree immersed finite element for boundary value problems with discontinuous coefficients , 2009 .
[7] Dongwoo Sheen,et al. A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..
[8] Gilbert A. Hegemier,et al. Finite Element Method for Interface Problems , 1982 .
[9] A. Huber,et al. Theorie und Anwendung der Laplace-Transformation , 1939 .
[10] J. A. C. Weideman,et al. Algorithms for Parameter Selection in the Weeks Method for Inverting the Laplace Transform , 1999, SIAM J. Sci. Comput..
[11] Tao Lin,et al. New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.
[12] Zhilin Li,et al. An immersed finite element space and its approximation capability , 2004 .
[13] Jinwoo Lee,et al. A Parallel Method for Backward Parabolic Problems Based on the Laplace Transformation , 2006, SIAM J. Numer. Anal..
[14] Xiaoming He,et al. Approximation capability of a bilinear immersed finite element space , 2008 .
[15] T. J. I'a. Bromwich,et al. Normal Coordinates in Dynamical Systems , 1917 .
[16] Ivan P. Gavrilyuk,et al. fMathematik in den Naturwissenschaften Leipzig H-matrix approximation for the operator exponential with applications , 2000 .
[17] Zhilin Li. The immersed interface method using a finite element formulation , 1998 .
[18] C. Palencia,et al. On the numerical inversion of the Laplace transform of certain holomorphic mappings , 2004 .
[19] Zhilin Li,et al. The immersed finite volume element methods for the elliptic interface problems , 1999 .
[20] Dongwoo Sheen,et al. A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .
[21] Slimane Adjerid,et al. HIGHER-ORDER IMMERSED DISCONTINUOUS GALERKIN METHODS , 2007 .
[22] Stefan A. Sauter,et al. Composite Finite Elements for Elliptic Boundary Value Problems with Discontinuous Coefficients , 2006, Computing.
[23] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[24] Xiaoming He,et al. A Bilinear Immersed Finite Volume Element Method For the Diffusion Equation with Discontinuous Coefficient , 2009 .
[25] T. Lin,et al. An Immersed Finite Element Electric Field Solver for Ion Optics Modeling , 2002 .
[26] Joseph Wang. The Immersed Finite Element Method for Plasma Particle Simulations , 2003 .