The Dynamic Analysis of Micro-Scale Edge in the Process of Micromilling

The micro-processing technology has gradually become a hot topic problem, especially in micro-scale milling chatter prevention with the development of the information age. In allusion to the actual case of micro-milling, the dynamic theoretical research is analyzed in-depth about the Fourier method and the average tooth angle method. Compared to two ways, the former is close to the actual processing requirements. The lobes are obtained use the two ways. Micro milling parameters are selected in the stable area and unstable region. Stable and non-stable curve and surface quality of machined parts are obtained after micro-milling test. The chatter points, non-chatter point and uncertain point are obtained in the high spindle speed, which are consistent with theoretical analysis. In contrast, the distribution of chatter points in the low-speed spindle speed. The reason is that the damping effect is produced in the micro-scale milling process. The research of micro-scale milling chatter, which has a certain significance to improve parts of precision machined parts, reduce the wear and tear of the micro-milling blade and extend micro-tool life.