Continuum scale modelling and complementary experimentation of solid oxide cells

Solid oxide cells are an exciting technology for energy conversion. Fuel cells, based on solid oxide technology, convert hydrogen or hydrogen-rich fuels into electrical energy, with potential applications in stationary power generation. Conversely, solid oxide electrolysers convert electricity into chemical energy, thereby offering the potential to store energy from transient resources, such as wind turbines and other renewable technologies. For solid oxide cells to displace conventional energy conversion devices in the marketplace, reliability must be improved, product lifecycles extended, and unit costs reduced. Mathematical models can provide qualitative and quantitative insight into physical phenomena and performance, over a range of length and time scales. The purpose of this paper is to provide the reader with a summary of the state-of-the art of solid oxide cell models. These range from: simple methods based on lumped parameters with little or no kinetics to detailed, time-dependent, three-dimensional solutions for electric field potentials, complex chemical kinetics and fully-comprehensive equations of motion based on effective transport properties. Many mathematical models have, in the past, been based on inaccurate property values obtained from the literature, as well as over-simplistic schemes to compute effective values. It is important to be aware of the underlying experimental methods available to parameterise mathematical models, as well as validate results. In this article, state-of-the-art techniques for measuring kinetic, electric and transport properties are also described. Methods such as electrochemical impedance spectroscopy allow for fundamental physicochemical parameters to be obtained. In addition, effective properties may be obtained using micro-scale computer simulations based on digital reconstruction obtained from X-ray tomography/focussed ion beam scanning electron microscopy, as well as percolation theory. The cornerstone of model validation, namely the polarisation or current-voltage diagram, provides necessary, but insufficient information to substantiate the reliability of detailed model calculations. The results of physical experiments which precisely mimic the details of model conditions are scarce, and it is fair to say there is a gap between the two activities. The purpose of this review is to introduce the reader to the current state-of-the art of solid oxide analysis techniques, in a tutorial fashion, not only numerical and but also experimental, and to emphasise the cross-linkages between techniques.

[1]  Vincenzo Antonucci,et al.  Modeling of a SOFC-HT battery hybrid system for optimal design of off-grid base transceiver station , 2017 .

[2]  S. Beale Use of Streamwise Periodic Boundary Conditions for Problems in Heat and Mass Transfer , 2007 .

[3]  N. Brandon,et al.  The fractal nature of the three-phase boundary: A heuristic approach to the degradation of nanostructured solid oxide fuel cell anodes , 2017 .

[4]  E. Achenbach Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack , 1994 .

[5]  E. Ivers-Tiffée,et al.  Grain-Size Effects in YSZ Thin-Film Electrolytes , 2009 .

[6]  H. Frandsen,et al.  Numerical evaluation of micro-structural parameters of porous supports in metal-supported solid oxide fuel cells , 2015 .

[7]  Rajamani Krishna,et al.  MASS AND ENERGY TRANSFER IN MULTICOMPONENT SYSTEMS , 1979 .

[8]  Thomas Heller,et al.  Influence of Operating Conditions on the Reliable Performance of Stacks and Integrated Stack Modules , 2009 .

[9]  Junxiang Shi,et al.  CFD analysis of a symmetrical planar SOFC with heterogeneous electrode properties , 2010 .

[10]  D. A. Noren,et al.  Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models , 2005 .

[11]  E. Ivers-Tiffée,et al.  Degradation of a High Performance SOFC Cathode by Cr‐Poisoning at OCV‐Conditions , 2013 .

[12]  Meng Ni,et al.  Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production , 2009 .

[13]  R. Kee,et al.  Multidimensional flow, thermal, and chemical behavior in solid-oxide fuel cell button cells , 2009 .

[14]  Xiao-Dong Zhou,et al.  Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series , 2017 .

[15]  Vinod M. Janardhanan,et al.  Numerical study of mass and heat transport in solid-oxide fuel cells running on humidified methane , 2007 .

[16]  R. Kee,et al.  Modeling Distributed Charge-Transfer Processes in SOFC Membrane Electrode Assemblies , 2008 .

[17]  E. Ivers-Tiffée,et al.  Electrochemical Analysis of Sulfur-Poisoning in Anode Supported SOFCs Fuelled with a Model Reformate , 2012 .

[18]  Vincenzo Antonucci,et al.  Thermal study of a SOFC system integration in a fuselage of a hybrid electric mini UAV , 2017 .

[19]  P. Gasser,et al.  3D Microstructure Effects in Ni-YSZ Anodes: Prediction of Effective Transport Properties and Optimization of Redox Stability , 2015, Materials.

[20]  Mogens Bjerg Mogensen,et al.  Gas Diffusion Impedance in Characterization of Solid Oxide Fuel Cell Anodes , 1999 .

[21]  Min Chul Lee,et al.  Numerical investigation of flow/heat transfer and structural stress in a planar solid oxide fuel cell , 2017 .

[22]  Ellen Ivers-Tiffée,et al.  Evaluation of electrochemical impedance spectra by the distribution of relaxation times , 2017 .

[23]  N. Woudstra,et al.  Biosyngas Utilization in Solid Oxide Fuel Cells With Ni∕GDC Anodes , 2006 .

[24]  T. Jacobsen,et al.  Analytical, 1-Dimensional Impedance Model of a Composite Solid Oxide Fuel Cell Cathode , 2014 .

[25]  Jon G. Pharoah,et al.  Stability Issues for Fuel Cell Models in the Activation and Concentration Regimes , 2018 .

[26]  Daniel Favrat,et al.  Simulation of SOFC stack and repeat elements including interconnect degradation and anode reoxidation risk , 2006 .

[27]  Ricardo Martinez-Botas,et al.  A Study of Temperature Distribution Across a Solid Oxide Fuel Cell Stack , 2010 .

[28]  C. Kleijn,et al.  A Mathematical Model for LPCVD in a Single Wafer Reactor , 1989 .

[29]  H. Schichlein,et al.  Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells , 2002 .

[30]  Min Zeng,et al.  Numerical study on carbon deposition of SOFC with unsteady state variation of porosity , 2012 .

[31]  A. Kornyshev,et al.  Feeding PEM fuel cells , 2005 .

[32]  Wei Wang,et al.  Electrochemical Analysis of an Anode-Supported SOFC , 2013, International Journal of Electrochemical Science.

[33]  Daniel Favrat,et al.  Progressive activation of degradation processes in solid oxide fuel cell stacks: Part II: Spatial distribution of the degradation , 2012 .

[34]  Murat Peksen,et al.  3D transient multiphysics modelling of a complete high temperature fuel cell system using coupled CFD and FEM , 2014 .

[35]  Alberto Traverso,et al.  SOFC/Gas Turbine Hybrid System: A simplified framework for dynamic simulation , 2019, Applied Energy.

[36]  Steven Beale,et al.  A Simple, Effective Viscosity Formulation for Turbulent Flow and Heat Transfer in Compact Heat Exchangers , 2012 .

[37]  Lisa M. Jackson,et al.  In-situ monitoring of temperature distribution in operating solid oxide fuel cell cathode using proprietary sensory techniques versus commercial thermocouples , 2018, Applied Energy.

[38]  J. Truitt,et al.  Interdiffusion of Gases in a Low Permeability Graphite at Uniform Pressure , 1962 .

[39]  Z. Jiao,et al.  Prediction of Nickel Morphological Evolution in Composite Solid Oxide Fuel Cell Anode Using Modified Phase Field Model , 2018 .

[40]  Paul A. Connor,et al.  Solid Oxide Fuels Cells: Facts and Figures , 2013 .

[41]  Enrico Traversa,et al.  Toward the Miniaturization of Solid Oxide Fuel Cells , 2009 .

[42]  L. Kershenbaum,et al.  Modelling of an indirect internal reforming solid oxide fuel cell , 2002 .

[43]  L. Gauckler,et al.  Reaction mechanism of Ni pattern anodes for solid oxide fuel cells , 2000 .

[44]  Vincent Heuveline,et al.  Three-phase boundary length in solid-oxide fuel cells: A mathematical model , 2008 .

[45]  Ce Song,et al.  A multiphysics fully coupled modeling tool for the design and operation analysis of planar solid oxide fuel cell stacks , 2017 .

[46]  M. Andersson,et al.  Thermal stress analysis of sulfur deactivated solid oxide fuel cells , 2018 .

[47]  Inês L. Azevedo,et al.  Meeting U.S. Solid Oxide Fuel Cell Targets , 2019, Joule.

[48]  Emily M. Ryan,et al.  Mesoscale modeling in electrochemical devices—A critical perspective , 2019, Progress in Energy and Combustion Science.

[49]  Maurizio Guida,et al.  A random-effects model for long-term degradation analysis of solid oxide fuel cells , 2015, Reliab. Eng. Syst. Saf..

[50]  Søren Linderoth,et al.  Effect of NiO-to-Ni transformation on conductivity and structure of yttria-stabilized ZrO2 , 2001 .

[51]  G. Comodi,et al.  More accurate macro-models of solid oxide fuel cells through electrochemical and microstructural parameter estimation - Part I: Experimentation , 2015 .

[52]  U. Pasaogullari,et al.  Controlling reformation rate for a more uniform temperature distribution in an internal methane steam reforming solid oxide fuel cell , 2020 .

[53]  M. Verkerk,et al.  Effect of grain boundaries on the conductivity of high-purity ZrO2-Y2O3 ceramics , 1982 .

[54]  B. Sundén,et al.  SOFC modeling considering hydrogen and carbon monoxide as electrochemical reactants , 2013 .

[55]  Jon G. Pharoah,et al.  Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cell , 2013 .

[56]  Seungdoo Park,et al.  Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell: I. Methane Oxidation , 1999 .

[57]  Wuxi Bi,et al.  Flow uniformity optimization for large size planar solid oxide fuel cells with U-type parallel channel designs , 2010 .

[58]  Bhavin K. Kapadia,et al.  A novel concept for in situ gas-phase laser Raman spectroscopy for solid oxide fuel cell research , 2013 .

[59]  O. Yamamoto Solid oxide fuel cells: fundamental aspects and prospects , 2000 .

[60]  Eric Croiset,et al.  An analytical model of view factors for radiation heat transfer in planar and tubular solid oxide fu , 2011 .

[61]  D. Leung,et al.  Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) , 2008 .

[62]  P. Annus,et al.  Electrochemical Impedance Spectroscopy , 2020 .

[63]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[64]  M. Faghihi-sani,et al.  “Fe doped Ni–Co spinel protective coating on ferritic stainless steel for SOFC interconnect application” , 2013 .

[65]  A. Hagen,et al.  Study of Operating Parameters for Accelerated Anode Degradation in SOFCs , 2017 .

[66]  E. Ivers-Tiffée,et al.  A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests , 2014 .

[67]  R. Shah Laminar Flow Forced convection in ducts , 1978 .

[68]  I. Yasuda,et al.  3-D model calculation for planar SOFC , 2001 .

[69]  André Weber,et al.  A 2D Stationary FEM Model for Hydrocarbon Fuelled SOFC Stack Layers , 2015 .

[70]  A. Bertei,et al.  Percolation theory in SOFC composite electrodes: Effects of porosity and particle size distribution , 2011 .

[71]  N. Shikazono,et al.  Three-dimensional numerical analysis of mixed ionic and electronic conducting cathode reconstructed by focused ion beam scanning electron microscope , 2011 .

[72]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[73]  Prabhakar Singh,et al.  LSM–YSZ interactions and anode delamination in solid oxide electrolysis cells , 2012 .

[74]  Comas Haynes,et al.  Characterizing heat transfer within a commercial-grade tubular solid oxide fuel cell for enhanced thermal management , 2001 .

[75]  J. Pharoah,et al.  Comprehensive computational fluid dynamics model of solid oxide fuel cell stacks , 2016 .

[76]  J. Giddings,et al.  NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFICIENTS , 1966 .

[77]  Ce Song,et al.  The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the rib design optimization , 2008 .

[78]  L. Gauckler,et al.  The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes , 2001 .

[79]  Shannon K. Yee,et al.  Challenges and progress on the modelling of entropy generation in porous media: A review , 2017 .

[80]  E. Ivers-Tiffée,et al.  The chemical oxygen surface exchange and bulk diffusion coefficient determined by impedance spectroscopy of porous La0.58Sr0.4Co0.2Fe0.8O3 − δ (LSCF) cathodes , 2015 .

[81]  Meng Ni,et al.  Modeling of a solid oxide electrolysis cell for carbon dioxide electrolysis , 2010 .

[82]  Michael B. Pomfret,et al.  Thermal imaging of solid oxide fuel cell anode processes , 2010 .

[83]  M. Davy,et al.  High-temperature vibrational Raman spectroscopy of gaseous species for solid-oxide fuel cell research , 2012 .

[84]  Kevin Kendall,et al.  Micro-tubular solid oxide fuel cells and stacks , 2011 .

[85]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[86]  Adrian Bejan,et al.  Mechanics of Fluid Flow through a Porous Medium , 2013 .

[87]  Ioannis K. Kookos,et al.  Parametric and transient analysis of non-isothermal, planar solid oxide fuel cells , 2012 .

[88]  Hiroaki Tagawa,et al.  Reaction kinetics at the nickel pattern electrode on YSZ and its dependence on temperature , 1995 .

[89]  E. Ivers-Tiffée,et al.  Advanced impedance modelling of Ni/8YSZ cermet anodes , 2017 .

[90]  S. W. Webb Gas-phase diffusion in porous media: Evaluation of an advective- dispersive formulation and the dusty-gas model including comparison to data for binary mixtures , 1996 .

[91]  Hrvoje Jasak,et al.  CFD analysis of cooling effects in H2-fed solid oxide fuel cells , 2011 .

[92]  E. Ivers-Tiffée,et al.  Oxygen equilibration kinetics of mixed-conducting perovskites BSCF, LSCF, and PSCF at 900 °C determined by electrical conductivity relaxation , 2015 .

[93]  Mogens Bjerg Mogensen,et al.  A Method to Separate Process Contributions in Impedance Spectra by Variation of Test Conditions , 2007 .

[94]  Steven Beale,et al.  Calculation procedure for mass transfer in fuel cells , 2004 .

[95]  Suresh V. Garimella,et al.  Analysis and prediction of constriction resistance for contact between rough engineering surfaces , 2004 .

[96]  Jon G. Pharoah,et al.  Modeling radiation heat transfer with participating media in solid oxide fuel cells , 2006 .

[97]  W. Dönitz,et al.  High-temperature electrolysis of water vapor—status of development and perspectives for application , 1985 .

[98]  H. Madi,et al.  Local Activation and Degradation of Electrochemical Processes in a SOFC , 2013 .

[99]  E. Ivers-Tiffée,et al.  Performance limiting factors in anode-supported cells originating from metallic interconnector desig , 2011 .

[100]  Christopher A Lueth,et al.  Automated SOFC Design Exploration , 2017 .

[101]  T. Schildhauer,et al.  Performance comparison of planar, tubular and Delta8 solid oxide fuel cells using a generalized finite volume model , 2008 .

[102]  W. Bessler,et al.  Microkinetic Modeling of Nickel Oxidation in Solid Oxide Cells: Prediction of Safe Operating Conditions , 2019, Chemie Ingenieur Technik.

[103]  Ellen Ivers-Tiffée,et al.  Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells , 2008 .

[104]  Ross Taylor,et al.  Multicomponent mass transfer , 1993 .

[105]  E. Ivers-Tiffée,et al.  Performance simulation of current/voltage-characteristics for SOFC single cell by means of detailed , 2011 .

[106]  D. Jeon,et al.  A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cells , 2006 .

[107]  K. Laidler,et al.  The theory of rate processes : the kinetics of chemical reactions, viscosity, diffusion and electrochemical phenomena , 1941 .

[108]  Xiaojuan Wu,et al.  Fault diagnosis and prognostic of solid oxide fuel cells , 2016 .

[109]  Henrik Lund Frandsen,et al.  Optimization of the strength of SOFC anode supports , 2012 .

[110]  Steven Beale,et al.  A Distributed Resistance Analogy for Solid Oxide Fuel Cells , 2005 .

[111]  Ellen Ivers-Tiffée,et al.  SOFC Modeling and Parameter Identification by Means of Impedance Spectroscopy , 2010 .

[112]  Wing Kam Liu,et al.  Multi-scale solid oxide fuel cell materials modeling , 2009 .

[113]  B. Sundén,et al.  Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics , 2014 .

[114]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[115]  Toshio Oshima,et al.  Estimation of the Co-ordination number in a Multi-Component Mixture of Spheres , 1983 .

[116]  Nigel P. Brandon,et al.  Application of infrared thermal imaging to the study of pellet solid oxide fuel cells , 2007 .

[117]  Yoshitaka Inui,et al.  Three dimensional analysis of planar solid oxide fuel cell stack considering radiation , 2007 .

[118]  Emil Baur,et al.  Über Brennstoff‐Ketten mit Festleitern , 1937, Zeitschrift für Elektrochemie und angewandte physikalische Chemie.

[119]  Steven Beale,et al.  Computer methods for performance prediction in fuel cells , 2003 .

[120]  Nigel P. Brandon,et al.  Hydrogen production through steam electrolysis: Model-based dynamic behaviour of a cathode-supported intermediate temperature solid oxide electrolysis cell , 2008 .

[121]  Yu. P. Shlykov,et al.  Thermal contact resistance , 1961 .

[122]  N. Menzler,et al.  Durability test and degradation behavior of a 2.5 kW SOFC stack with internal reforming of LNG , 2013 .

[123]  Mayu Muramatsu,et al.  Numerical simulations of non-stationary distributions of electrochemical potentials in SOFC , 2017 .

[124]  M. Khaleel,et al.  Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks , 2003 .

[125]  Jon G. Pharoah,et al.  Validation of a Solid Oxide Fuel Cell Model on the International Energy Agency Benchmark Case with Hydrogen Fuel , 2015 .

[126]  J. Maier On the Conductivity of Polycrystalline Materials , 1986 .

[127]  Kevin P. Chen,et al.  Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations , 2017, Scientific Reports.

[128]  Günter Schiller,et al.  Spatial Distribution of Electrochemical Performance in a Segmented SOFC: A Combined Modeling and Experimental Study , 2010 .

[129]  W. Bessler Rapid Impedance Modeling via Potential Step and Current Relaxation Simulations , 2007 .

[130]  Jan Van herle,et al.  Three-dimensional microstructural changes in the Ni-YSZ solid oxide fuel cell anode during operation , 2012 .

[131]  J. Young,et al.  Modelling of multi-component gas flows in capillaries and porous solids , 2005 .

[132]  B. Sundén,et al.  Localized carbon deposition in solid oxide electrolysis cells studied by multiphysics modeling , 2016, Journal of Power Sources.

[133]  Piet J. A. M. Kerkhof,et al.  A modified Maxwell-Stefan model for transport through inert membranes : the binary friction model , 1996 .

[134]  A. Hagiwara FUEL CELL SYSTEMS , 2022 .

[135]  J. Fergus Electrolytes for solid oxide fuel cells , 2006 .

[136]  M. Mogensen,et al.  Performance and Durability of Solid Oxide Electrolysis Cells , 2006 .

[137]  Jon G. Pharoah,et al.  Open-source computational model of a solid oxide fuel cell , 2016, Comput. Phys. Commun..

[138]  More accurate macro-models of solid oxide fuel cells through electrochemical and microstructural parameter estimation-Part II: Parameter estimation , 2015 .

[139]  N. Menzler,et al.  Solid Oxide Fuel Cell, Stack and System Development Status at Forschungszentrum Jülich , 2015 .

[140]  Hermann Schichl,et al.  Degradation of the electrical conductivity in stabilised zirconia system: Part II: Scandia-stabilised zirconia , 2005 .

[141]  B. Haberman,et al.  Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell , 2004 .

[142]  Michael Synodis,et al.  A Model to Predict Percolation Threshold and Effective Conductivity of Infiltrated Electrodes for Solid Oxide Fuel Cells , 2013 .

[143]  A. Bertei,et al.  Common inconsistencies in modeling gas transport in porous electrodes: The dusty-gas model and the Fick law , 2015 .

[144]  William J. Wepfer,et al.  Prediction of on-design and off-design performance for a solid oxide fuel cell power module , 1996 .

[145]  Alan S. Fung,et al.  Macro-level modeling of solid oxide fuel cells, approaches, and assumptions revisited , 2017 .

[146]  S. Jiang,et al.  Sintering and grain growth of (La,Sr)MnO3 electrodes of solid oxide fuel cells under polarization , 2005 .

[147]  K. Yamaji,et al.  General considerations on degradation of Solid Oxide Fuel Cell anodes and cathodes due to impurities in gases , 2011 .

[148]  J. Brouwer,et al.  A Finite Volume SOFC Model for Coal-Based Integrated Gasification Fuel Cell Systems Analysis , 2009 .

[149]  Thomas Sattelmayer,et al.  Theoretical studies of high-temperature multilayer thermal insulations using radiation scaling , 2004 .

[150]  Donald L. Katz,et al.  Flow of Gases through Consolidated Porous Media , 1953 .

[151]  Andrei Kulikovsky,et al.  A Physically–Based Analytical Polarization Curve of a PEM Fuel Cell , 2014 .

[152]  Cheng Bao,et al.  Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system , 2018 .

[153]  H. Frandsen,et al.  Efficient modeling of metallic interconnects for thermo-mechanical simulation of SOFC stacks: Homogenized behaviors and effect of contact , 2016 .

[154]  H. Frandsen,et al.  Numerical evaluation of oxide growth in metallic support microstructures of Solid Oxide Fuel Cells and its influence on mass transport , 2015 .

[155]  E. Ivers-Tiffée,et al.  A 0-Dimensional Stationary Model for Anode-Supported Solid Oxide Fuel Cells , 2010 .

[156]  Hermann Schichl,et al.  Degradation of the electrical conductivity in stabilised zirconia systems , 2005 .

[157]  W. G. Pollard,et al.  On Gaseous Self-Diffusion in Long Capillary Tubes , 1948 .

[158]  Said S.E.H. Elnashaie,et al.  Simulation and optimization of an industrial ammonia reactor , 1988 .

[159]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[160]  Murat Peksen,et al.  Numerical thermomechanical modelling of solid oxide fuel cells , 2015 .

[161]  Zijing Lin,et al.  Theoretical models for effective electrical and electrochemical properties of nano-particle infiltrated electrode of solid oxide fuel cell , 2014 .

[162]  J. Newman,et al.  Mass Transport in Gas‐Diffusion Electrodes: A Diagnostic Tool for Fuel‐Cell Cathodes , 1998 .

[163]  Gregory S. Jackson,et al.  Electrochemical Oxidation of H2, CO, and CO ∕ H2 Mixtures on Patterned Ni Anodes on YSZ Electrolytes , 2006 .

[164]  N. Brandon,et al.  Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell , 2007 .

[165]  J. Euler,et al.  Stromverteilung in porösen elektroden , 1960 .

[166]  Nigel P. Brandon,et al.  Microstructural analysis of a solid oxide fuel cell anode using focused ion beam techniques coupled with electrochemical simulation , 2010 .

[167]  Wilson K. S. Chiu,et al.  A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell , 2012 .

[168]  Kyle J. Daun,et al.  Radiation heat transfer in planar SOFC electrolytes , 2006 .

[169]  Marco Sorrentino,et al.  A Review on solid oxide fuel cell models , 2011 .

[170]  S. Kakaç,et al.  A review of numerical modeling of solid oxide fuel cells , 2007 .

[171]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[172]  W. Bessler,et al.  A new framework for physically based modeling of solid oxide fuel cells , 2007 .

[173]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[174]  Volker Schmidt,et al.  Big data for microstructure‐property relationships: A case study of predicting effective conductivities , 2017 .

[175]  Pierre Freundt,et al.  Systemnahe thermische Charakterisierung eines oxidkeramischen Brennstoffzellen-Stacks für die mobile Anwendung , 2015 .

[176]  Andrei G. Fedorov,et al.  Radiation heat transfer in SOFC materials and components , 2005 .

[177]  W. Jaegermann,et al.  X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3 , 2005 .

[178]  Murat Peksen,et al.  A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions , 2014 .

[179]  Morteza Rahmanipour,et al.  A Distributed Charge Transfer Model for IT-SOFCs Based on Ceria Electrolytes , 2017 .

[180]  S. Jiang,et al.  Deposition of Chromium Species at Sr‐Doped LaMnO3 Electrodes in Solid Oxide Fuel Cells. I. Mechanism and Kinetics , 2000 .

[181]  I. Dincer,et al.  A review on macro‐level modeling of planar solid oxide fuel cells , 2008 .

[182]  Alberto Traverso,et al.  A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization , 2016 .

[183]  W. Lehnert,et al.  Polymer electrolyte fuel cell modeling - A comparison of two models with different levels of complexity , 2020 .

[184]  E. Ivers-Tiffée,et al.  A Non-Isothermal 2D Stationary FEM Model for Hydrocarbon Fueled SOFCs Stack Layers , 2017 .

[185]  D. Sadoway,et al.  Modeling discontinuous potential distributions using the finite volume method, and application to liquid metal batteries , 2019, Electrochimica Acta.

[186]  J. Pharoah,et al.  Development of a SOFC Performance Model to Analyze the Powder to Power Performance of Electrode Microstructures , 2015 .

[187]  Meng Ni,et al.  2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis , 2012 .

[188]  Vinod M. Janardhanan,et al.  CFD analysis of a solid oxide fuel cell with internal reforming : Coupled interactions of transport, heterogeneous catalysis and electrochemical processes , 2006 .

[189]  Meilin Liu,et al.  In Situ Potential-Dependent FTIR Emission Spectroscopy A Novel Probe for High Temperature Fuel Cell Interfaces , 2002 .

[190]  E. Ivers-Tiffée,et al.  Internal Reforming of Methane at Ni/YSZ and Ni/CGO SOFC Cermet Anodes , 2006 .

[191]  Murat Peksen,et al.  Hierarchical 3D multiphysics modelling in the design and optimisation of SOFC system components , 2011 .

[192]  E. Ivers-Tiffée,et al.  Practical Guidelines for Reliable Electrochemical Characterization of Solid Oxide Fuel Cells , 2017 .

[193]  F. Lange,et al.  Relation between percolation and particle coordination in binary powder mixtures , 1991 .

[194]  M. Khaleel,et al.  A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC® , 2004 .

[195]  R. Levins The strategy of model building in population biology , 1966 .

[196]  Nobuhide Kasagi,et al.  Micro modeling of solid oxide fuel cell anode based on stochastic reconstruction , 2008 .

[197]  Robert J. Kee,et al.  A particle-based model for predicting the effective conductivities of composite electrodes , 2010 .

[198]  Vincenzo Antonucci,et al.  Experimental and numerical analysis of a SOFC-CHP system with adsorption and hybrid chillers for telecommunication applications , 2018 .

[199]  M. Mogensen,et al.  SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study , 2011 .

[200]  Alberto Traverso,et al.  A distributed real-time model of degradation in a solid oxide fuel cell, part II: Analysis of fuel cell performance and potential failures , 2016 .

[201]  Daniel Favrat,et al.  Modeling and experimental validation of solid oxide fuel cell materials and stacks , 2005 .

[202]  D. Sánchez,et al.  An assessment on convective and radiative heat transfer modelling in tubular solid oxide fuel cells , 2007 .

[203]  Nobuhide Kasagi,et al.  Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model Microstructure Reconstructed from FIB-SEM Images , 2010 .

[204]  E. Ivers-Tiffée,et al.  3D finite element model for reconstructed mixed-conducting cathodes: II. Parameter sensitivity analysis , 2012 .

[205]  E. Ivers-Tiffée,et al.  Stationary FEM Model for Performance Evaluation of Planar Solid Oxide Fuel Cells Connected by Metal Interconnectors I. Model Framework and Validation , 2014 .

[206]  E. Ivers-Tiffée,et al.  Quantification of double-layer Ni/YSZ fuel cell anodes from focused ion beam tomography data , 2014 .

[207]  Daniel Favrat,et al.  Local current measurement in a solid oxide fuel cell repeat element , 2007 .

[208]  Ellen Ivers-Tiffée,et al.  Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling , 2011 .

[209]  Sang Keun Dong,et al.  Optimization of manifold design for 1 kW-class flat-tubular solid oxide fuel cell stack operating on reformed natural gas , 2016 .

[210]  M. Laguna-Bercero Recent advances in high temperature electrolysis using solid oxide fuel cells: A review , 2012 .

[211]  V. Schmidt,et al.  Quantitative relationships between microstructure and effective transport properties based on virtual materials testing , 2014 .

[212]  Hua Li,et al.  Reduced non-isothermal model for the planar solid oxide fuel cell and stack , 2014 .

[213]  R. Davis,et al.  Connecting microstructural coarsening processes to electrochemical performance in solid oxide fuel cells: An integrated modeling approach , 2014 .

[214]  Jin Hyun Nam,et al.  Microstructural Optimization of Anode-Supported Solid Oxide Fuel Cells by a Comprehensive Microscale Model , 2006 .

[215]  D. Favrat,et al.  Electrochemical Model of Solid Oxide Fuel Cell for Simulation at the Stack Scale I. Calibration Procedure on Experimental Data , 2011 .

[216]  Bernhard Tjaden,et al.  Tortuosity in electrochemical devices: a review of calculation approaches , 2018 .

[217]  Henrik Lund Frandsen,et al.  A fully-homogenized multiphysics model for a reversible solid oxide cell stack , 2019, International Journal of Hydrogen Energy.

[218]  R. Krishna Comments on "simulation and optimization of an industrial ammonia reactor" , 1989 .

[219]  Meng Ni,et al.  Geometric Properties of Nanostructured Solid Oxide Fuel Cell Electrodes , 2013 .

[220]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[221]  F. Elizalde-Blancas,et al.  Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance , 2019, Applied Energy.

[222]  V. A. Danilov,et al.  A new technique of estimating anodic and cathodic charge transfer coefficients from SOFC polarization curves , 2009 .

[223]  S. Chan,et al.  Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte , 2002 .

[224]  Jie Yang,et al.  Parameter identification of an SOFC model with an efficient, adaptive differential evolution algorithm , 2014 .

[225]  S. Barnett,et al.  Prediction of infiltrated solid oxide fuel cell cathode polarization resistance , 2009 .

[226]  Meilin Liu,et al.  Rational SOFC material design: new advances and tools , 2011 .

[227]  Xiufu Sun,et al.  Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells , 2013 .

[228]  Vincent Heuveline,et al.  Performance analysis of a SOFC under direct internal reforming conditions , 2007 .

[229]  Ali Volkan Akkaya,et al.  Electrochemical model for performance analysis of a tubular SOFC , 2007 .

[230]  S. Beale Mass transfer in plane and square ducts , 2005 .

[231]  P. Voorhees,et al.  Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: The role of nano-particle coarsening , 2011 .

[232]  Bin Chen,et al.  Thermal modelling of ethanol-fuelled Solid Oxide Fuel Cells , 2019, Applied Energy.

[233]  S. A. Barnett,et al.  A direct-methane fuel cell with a ceria-based anode , 1999, Nature.

[234]  Fumihiko Yoshiba,et al.  Numerical analysis of electrochemical characteristics and heat/species transport for planar porous-electrode-supported SOFC , 2007 .

[235]  J. Bassat,et al.  La2NiO4+δ infiltrated into gadolinium doped ceria as novel solid oxide fuel cell cathodes: Electrochemical performance and impedance modelling , 2015 .

[236]  Suresh V. Garimella,et al.  An experimentally validated thermo-mechanical model for the prediction of thermal contact conductance , 2005 .

[237]  Norman Epstein,et al.  On tortuosity and the tortuosity factor in flow and diffusion through porous media , 1989 .

[238]  Carl M. Stoots,et al.  3D CFD model of a multi-cell high-temperature electrolysis stack , 2007 .

[239]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[240]  Andrei G. Fedorov,et al.  Spectral Radiative Heat Transfer Analysis of the Planar SOFC , 2005 .

[241]  Mogens Bjerg Mogensen,et al.  Impurity features in Ni-YSZ-H2-H2O electrodes , 2011 .

[242]  J. Young,et al.  Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling , 2002 .

[243]  Theodoros E. Karakasidis,et al.  Multiscale modeling in nanomaterials science , 2007 .

[244]  B. Sundén,et al.  CFD Modeling: Different Kinetic Approaches for Internal Reforming Reactions in an Anode-Supported SOFC , 2011 .

[245]  Zijing Lin,et al.  Degradations of the electrochemical performance of solid oxide fuel cell induced by material microstructure evolutions , 2018, Applied Energy.

[246]  Robert Steinberger-Wilckens,et al.  Recent results in Jülich solid oxide fuel cell technology development , 2013 .

[247]  H. Iwai,et al.  Chromium poisoning in (La,Sr)MnO3 cathode: Three-dimensional simulation of a solid oxide fuel cell , 2016 .

[248]  Meng Ni,et al.  Microstructural Insights into Dual-Phase Infiltrated Solid Oxide Fuel Cell Electrodes , 2013 .

[249]  Paola Costamagna,et al.  Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization , 1998 .

[250]  Maurizio Guida,et al.  A Bayesian Estimation Procedure for the Non-Homogeneous Gamma Process , 2015 .

[251]  Bengt Sundén,et al.  Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells , 2010 .

[252]  Bengt Sundén,et al.  SOFC modeling considering electrochemical reactions at the active three phase boundaries , 2012 .

[253]  H. Frandsen,et al.  Modeling the Mechanical Integrity of Generic Solid Oxide Cell Stack Designs Exposed to Long‐term Operation , 2018, Fuel Cells.

[254]  James K. Carson,et al.  Thermal conductivity bounds for isotropic, porous materials , 2005 .

[255]  Meng Ni,et al.  Modeling of SOFC running on partially pre-reformed gas mixture , 2012 .

[256]  Zijing Lin,et al.  A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics , 2016 .

[257]  N. Sammes,et al.  Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects , 2005 .

[258]  M. Ni,et al.  Simulation of sintering kinetics and microstructure evolution of composite solid oxide fuel cells electrodes , 2012 .

[259]  Ricardo Chacartegui,et al.  Thermal and electrochemical model of internal reforming solid oxide fuel cells with tubular geometry , 2006 .

[260]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[261]  Bengt Sundén,et al.  Three dimensional modeling of an solid oxide fuel cell coupling charge transfer phenomena with transport processes and heat generation , 2013 .

[262]  F. Tietz,et al.  Time-Dependent Electrode Performance Changes in Intermediate Temperature Solid Oxide Fuel Cells , 2010 .

[263]  S. Ulgiati,et al.  In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas , 2017 .

[264]  E. Ivers-Tiffée,et al.  Electrochemical Modeling of the Current-Voltage Characteristics of an SOFC in Fuel Cell and Electrolyzer Operation Modes , 2013 .

[265]  B. Chi,et al.  Numerical simulation and analysis of thermal stress distributions for a planar solid oxide fuel cell stack with external manifold structure , 2018, International Journal of Hydrogen Energy.

[266]  B. B. Mikic,et al.  Thermal contact resistance , 1966 .

[267]  Zijing Lin,et al.  Property models and theoretical analysis of novel solid oxide fuel cell with triplet nano-composite electrode , 2014 .

[268]  E. Ivers-Tiffée,et al.  Sulfur Poisoning of Anode‐Supported SOFCs under Reformate Operation , 2013 .

[269]  Haiyan Wang,et al.  Nanostructured cathode thin films with vertically-aligned nanopores for thin film SOFC and their characteristics , 2007 .

[270]  I. Celik,et al.  A numerical study of cell-to-cell variations in a SOFC stack , 2004 .

[271]  J. Pharoah,et al.  A Particle-Based Model for Effective Properties in Infiltrated Solid Oxide Fuel Cell Electrodes , 2014 .

[272]  E. Gileadi,et al.  Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists , 1993 .

[273]  Ahmed F. Ghoniem,et al.  An improved one-dimensional membrane-electrode assembly model to predict the performance of solid oxide fuel cell including the limiting current density , 2009 .

[274]  O. Deutschmann,et al.  Methane reforming kinetics within a Ni–YSZ SOFC anode support , 2005 .

[275]  Anil V. Virkar,et al.  The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells , 2000 .

[276]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[277]  D. Favrat,et al.  Progressive activation of degradation processes in solid oxide fuel cells stacks: Part I: Lifetime extension by optimisation of the operating conditions , 2012 .

[278]  Zijing Lin,et al.  A theoretical model for the electrical conductivity of core–shell nano-composite electrode of SOFC , 2014 .

[279]  B. Sundén,et al.  SOFC Cell Design Optimization Using the Finite Element Method Based CFD Approach , 2014 .

[280]  A. Latz,et al.  Elementary Kinetic Numerical Simulation of Ni/YSZ SOFC Anode Performance Considering Sulfur Poisoning , 2015 .

[281]  E. Ivers-Tiffée,et al.  3D-Modelling and Performance Evaluation of Mixed Conducting (MIEC) Cathodes , 2007 .

[282]  R. Herbin,et al.  Three-dimensional numerical simulation for various geometries of solid oxide fuel cells , 1996 .

[283]  Robert J. Kee,et al.  On the Fundamental and Practical Aspects of Modeling Complex Electrochemical Kinetics and Transport , 2018 .

[284]  Michael B. Pomfret,et al.  In situ studies of fuel oxidation in solid oxide fuel cells. , 2007, Analytical chemistry.

[285]  E. Ivers-Tiffée,et al.  Accelerated degradation of 8.5 mol% Y2O3-doped zirconia by dissolved Ni , 2012 .

[286]  Ellen Ivers-Tiffée,et al.  Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2 , 2006 .

[287]  F. Tietz,et al.  Performance analysis of mixed ionicelectronic conducting cathodes in anode supported cells , 2011 .

[288]  Robert J. Braun,et al.  Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications , 2002 .

[289]  D. Favrat,et al.  Electrochemical Model of Solid Oxide Fuel Cell for Simulation at the Stack Scale II: Implementation of Degradation Processes , 2011 .

[290]  S. Barnett,et al.  Measurements and Modeling of Sm0.5Sr0.5CoO3-x-Ce0.9Gd0.1O1.95 SOFC Cathodes Produced Using Infiltrate Solution Additives , 2010 .

[291]  Robert J. Kee,et al.  Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes , 2009 .

[292]  E. A. Mason,et al.  Gas Transport in Porous Media: The Dusty-Gas Model , 1983 .

[293]  T. Oshima,et al.  Comparison between the computer-simulated results and the model for estimating the co-ordination number in a three-component random mixture of spheres , 1985 .

[294]  Modeling mass transfer in solid oxide fuel cell anode: I. Comparison between Fickian, Stefan-Maxwell and dusty-gas models , 2016 .

[295]  C. Adjiman,et al.  Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance , 2004 .

[296]  H. Iwai,et al.  Three-Dimensional Simulation of SOFC Anode Polarization Characteristics Based on Sub-Grid Scale Modeling of Microstructure , 2012 .

[297]  S. Koch Contact Resistance of Ceramic Interfaces Between Materi- als Used for Solid Oxide Fuel Cell Applications , 2002 .

[298]  H. Schichlein System Identification: A New Modelling Approach for SOFC Single Cells , 1999 .

[299]  R. McMeeking,et al.  Impact of particle size ratio and volume fraction on effective material parameters and performance in solid oxide fuel cell electrodes , 2012 .

[300]  Robert J. Kee,et al.  Homogeneous kinetics and equilibrium predictions of coking propensity in the anode channels of direct oxidation solid-oxide fuel cells using dry natural gas , 2003 .

[301]  Wolfgang G. Bessler,et al.  A new computational approach for SOFC impedance from detailed electrochemical reaction–diffusion models , 2005 .

[302]  Dayadeep S. Monder,et al.  An Effective Property Model for Infiltrated Electrodes in Solid Oxide Fuel Cells , 2014 .

[303]  Ann V. Call,et al.  Use of the Simple Infiltrated Microstructure Polarization Loss Estimation (SIMPLE) model to describe the performance of nano-composite solid oxide fuel cell cathodes. , 2012, Physical chemistry chemical physics : PCCP.

[304]  Ellen Ivers-Tiffée,et al.  Degradation and Relaxation Effects of Ni Patterned Anodes in H2 – H2O Atmosphere , 2010 .

[305]  I. Chorkendorff,et al.  Effect of impurities on structural and electrochemical properties of the Ni-YSZ interface. , 2003 .

[306]  J. Pharoah,et al.  Heat and Mass Transfer in Fuel Cells and Stacks , 2020 .

[307]  J. Van herle,et al.  Nickel–Zirconia Anode Degradation and Triple Phase Boundary Quantification from Microstructural Analysis , 2009 .

[308]  Volker Schmidt,et al.  Predicting Effective Conductivities Based on Geometric Microstructure Characteristics , 2016 .

[309]  Michael D. Mann,et al.  The rational approximation method in the prediction of thermodynamic properties for SOFCs , 2004 .

[310]  S. Beale Conjugate Mass Transfer in Gas Channels and Diffusion Layers of Fuel Cells , 2005 .

[311]  M. Gross,et al.  Insights into the Design of SOFC Infiltrated Electrodes with Optimized Active TPB Density via Mechanistic Modeling , 2014 .

[312]  Zijing Lin,et al.  Theoretical model for surface diffusion driven Ni-particle agglomeration in anode of solid oxide fuel cell , 2014 .

[313]  Jon G. Pharoah,et al.  Effective transport properties of the porous electrodes in solid oxide fuel cells , 2011 .

[314]  M. Fowler,et al.  Performance comparison of Fick’s, dusty-gas and Stefan–Maxwell models to predict the concentration overpotential of a SOFC anode , 2003 .

[315]  S. Campanari,et al.  Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry , 2004 .

[316]  S. Nam,et al.  Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC , 2018, Applied Energy.

[317]  Simulation of Solid Oxide Fuel Cell Anode Microstructure Evolution Using Phase Field Method , 2013 .

[318]  E. Ivers-Tiffée,et al.  Microstructure of Nanoscaled La0.6Sr0.4CoO3‐δ Cathodes for Intermediate‐Temperature Solid Oxide Fuel Cells , 2011 .

[319]  Khiam Aik Khor,et al.  Cathode Micromodel of Solid Oxide Fuel Cell , 2004 .

[320]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[321]  D. Ding,et al.  Enhancement in Three-Phase Boundary of SOFC Electrodes by an Ion Impregnation Method : A Modeling Comparison , 2008 .

[322]  Jian Zhang,et al.  Optimal design of bi-layer interconnector for SOFC based on CFD-Taguchi method , 2010 .

[323]  On the modified Stefan–Maxwell equation for isothermal multicomponent gaseous diffusion , 2006 .

[324]  Werner Lehnert,et al.  Modelling of gas transport phenomena in SOFC anodes , 2000 .

[325]  Dennis Y.C. Leung,et al.  Parametric study of solid oxide steam electrolyzer for hydrogen production , 2007 .

[326]  M. Modest Radiative heat transfer , 1993 .

[327]  Vinod M. Janardhanan,et al.  Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells , 2005 .

[328]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[329]  Zijing Lin,et al.  A modified dusty gas model in the form of a Fick's model for the prediction of multicomponent mass transport in a solid oxide fuel cell anode , 2012 .

[330]  S. Chan,et al.  A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness , 2001 .

[331]  Edward A. Mason,et al.  Approximate Formula for the Thermal Conductivity of Gas Mixtures , 1958 .

[332]  M. Soroush,et al.  Mathematical modeling of solid oxide fuel cells: A review , 2011 .

[333]  Mogens Bjerg Mogensen,et al.  Progress in understanding SOFC electrodes , 2002 .

[334]  G. Allan Heterojunctions and Semiconductor Superlattices , 1986 .

[335]  R. Dougal,et al.  Parameter setting and analysis of a dynamic tubular SOFC model , 2006 .

[336]  Masoud Soroush,et al.  Mathematical Modeling, Steady-State and Dynamic Behavior, and Control of Fuel Cells: A Review† , 2010 .

[337]  Raymond Viskanta,et al.  Studies on high-temperature multilayer thermal insulations , 2004 .

[338]  V. Antonucci,et al.  Micro-modelling of solid oxide fuel cell electrodes , 1998 .

[339]  G. Bart Thermal conduction in non homogeneous and phase change media , 1994 .

[340]  S. Sunde Simulations of Composite Electrodes in Fuel Cells , 2000 .

[341]  B. Sundén,et al.  A three dimensional multiphysics model of a solid oxide electrochemical cell: A tool for understanding degradation , 2018, International Journal of Hydrogen Energy.

[342]  Paola Costamagna,et al.  Electrochemical model of the integrated planar solid oxide fuel cell (IP-SOFC) , 2004 .

[343]  Van Nhu Nguyen,et al.  Methane/steam global reforming kinetics over the Ni/YSZ of planar pre-reformers for SOFC systems , 2016 .

[344]  M. Ni,et al.  Reconstruction of solid oxide fuel cell electrode microstructure and analysis of its effective conductivity , 2016 .

[345]  Paola Costamagna,et al.  Effect of composition on the performance of cermet electrodes. Experimental and theoretical approach , 2002 .

[346]  D. Goodwin,et al.  Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.2.0 , 2015 .

[347]  I. Dincer,et al.  Transient heat transfer modeling of a solid oxide fuel cell operating with humidified hydrogen , 2011 .

[348]  M. R. J. Wyllie,et al.  Application of Electrical Resistivity Measurements to Problem of Fluid Flow in Porous Media , 1952 .

[349]  J. Pharoah,et al.  Three-dimensional computational fluid dynamics modelling and experimental validation of the Jülich Mark-F solid oxide fuel cell stack , 2018 .

[350]  Kuan-Zong Fung,et al.  The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance I. Theoretical Analysis , 1997 .

[351]  Geert Versteeg,et al.  The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media , 1995 .

[352]  M. Ni,et al.  On the tortuosity factor of solid phase in solid oxide fuel cell electrodes , 2015 .

[353]  Dennis Y.C. Leung,et al.  Theoretical analysis of reversible solid oxide fuel cell based on proton-conducting electrolyte , 2008 .

[354]  Kurtis P. Recknagle,et al.  Multiscale Electrochemistry Modeling of Solid Oxide Fuel Cells , 2005 .

[355]  E. Ivers-Tiffée,et al.  Time-Dependent 3D Impedance Model of Mixed-Conducting Solid Oxide Fuel Cell Cathodes , 2013 .

[356]  Dennis Y.C. Leung,et al.  A modeling study on concentration overpotentials of a reversible solid oxide fuel cell , 2006 .

[357]  M. Ni,et al.  3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodes , 2020 .

[358]  Andrei A. Kulikovsky,et al.  Analytical Modelling of Fuel Cells , 2010 .

[359]  B. Steele Survey of materials selection for ceramic fuel cells II. Cathodes and anodes , 1996 .

[360]  Murat Peksen,et al.  3D thermomechanical behaviour of solid oxide fuel cells operating in different environments , 2013 .

[361]  Norbert H. Menzler,et al.  Degradation of anode supported cell (ASC) performance by Cr-poisoning , 2011 .

[362]  Ellen Ivers-Tiffée,et al.  Electrochemical model for SOFC and SOEC mode predicting performance and efficiency , 2014 .

[363]  J. E. Bauerle Study of solid electrolyte polarization by a complex admittance method , 1969 .