Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra

We develop techniques for computing the (un)stable manifold at a hyperbolic equilibrium of an analytic vector field. Our approach is based on the so-called parametrization method for invariant manifolds. A feature of this approach is that it leads to a posteriori analysis of truncation errors which, when combined with careful management of round off errors, yields a mathematically rigorous enclosure of the manifold. The main novelty of the present work is that, by conjugating the dynamics on the manifold to a polynomial rather than a linear vector field, the computer-assisted analysis is successful even in the case when the eigenvalues fail to satisfy non-resonance conditions. This generically occurs in parametrized families of vector fields. As an example, we use the method as a crucial ingredient in a computational existence proof of a connecting orbit in an amplitude equation related to a pattern formation model that features eigenvalue resonances.

[1]  Rafael de la Llave,et al.  Numerical calculation of domains of analyticity for perturbation theories in the presence of small divisors , 1992 .

[2]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)stable Manifolds of Vector Fields , 2006 .

[3]  S. Rump Computational error bounds for multiple or nearly multiple eigenvalues , 2001 .

[4]  Rafael de la Llave,et al.  A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .

[5]  W. Tucker,et al.  A Note on the Convergence of Parametrised Non-Resonant Invariant Manifolds , 2008, 0811.4500.

[6]  O. Lanford A computer-assisted proof of the Feigenbaum conjectures , 1982 .

[7]  J. Eckmann,et al.  A computer-assisted proof of universality for area-preserving maps , 1984 .

[8]  Konstantin Mischaikow,et al.  Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..

[9]  Jean-Philippe Lessard,et al.  Stationary Coexistence of Hexagons and Rolls via Rigorous Computations , 2015, SIAM J. Appl. Dyn. Syst..

[10]  Jean-Philippe Lessard,et al.  Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form , 2015, SIAM J. Appl. Dyn. Syst..

[11]  Martin Berz,et al.  Rigorous high-precision enclosures of fixed points and their invariant manifolds , 2011 .

[12]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[13]  Nobito Yamamoto,et al.  A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach's Fixed-Point Theorem , 1998 .

[14]  H. Koch,et al.  Existence and stability of traveling pulse solutions of the FitzHugh–Nagumo equation , 2015 .

[15]  Konstantin Mischaikow,et al.  Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..

[16]  Rafael de la Llave,et al.  Computation of Limit Cycles and Their Isochrons: Fast Algorithms and Their Convergence , 2013, SIAM J. Appl. Dyn. Syst..

[17]  Jason D. Mireles-James,et al.  Computation of Heteroclinic Arcs with Application to the Volume Preserving Hénon Family , 2010, SIAM J. Appl. Dyn. Syst..

[18]  S. Chow,et al.  Normal Forms and Bifurcation of Planar Vector Fields , 1994 .

[19]  M. Berz,et al.  Rigorous and accurate enclosure of invariant manifolds on surfaces , 2010 .

[20]  Gemma Huguet,et al.  A Computational and Geometric Approach to Phase Resetting Curves and Surfaces , 2009, SIAM J. Appl. Dyn. Syst..

[21]  R. Canosa,et al.  The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces , 2002 .

[22]  Götz Alefeld,et al.  Iterative improvement of componentwise errorbounds for invariant subspaces belonging to a double or nearly double eigenvalue , 1986, Computing.

[23]  R. Canosa,et al.  The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .

[24]  Marta Canadell,et al.  Parameterization Method for Computing Quasi-periodic Reducible Normally Hyperbolic Invariant Tori , 2014 .

[25]  J. D. M. James,et al.  Computation of maximal local (un)stable manifold patches by the parameterization method , 2015, 1508.02615.

[26]  Jean-Philippe Lessard,et al.  Global Bifurcation Diagrams of Steady States of Systems of PDEs via Rigorous Numerics: a 3-Component Reaction-Diffusion System , 2013 .

[27]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[28]  J. D. M. James Quadratic Volume-Preserving Maps: (Un)stable Manifolds, Hyperbolic Dynamics, and Vortex-Bubble Bifurcations , 2013 .

[29]  Jean-Philippe Lessard,et al.  Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach , 2015, Math. Comput..

[30]  Konstantin Mischaikow,et al.  Rigorous A Posteriori Computation of (Un)Stable Manifolds and Connecting Orbits for Analytic Maps , 2013, SIAM J. Appl. Dyn. Syst..

[31]  J. D. M. James Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds , 2015 .

[32]  R. Llave,et al.  The parameterization method for invariant manifolds III: overview and applications , 2005 .

[33]  Björn Sandstede,et al.  Propagation of hexagonal patterns near onset , 2003, European Journal of Applied Mathematics.

[34]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[35]  J. Lessard,et al.  Global bifurcation diagram of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system , 2015, 1511.01414.

[36]  J. Mondelo,et al.  The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations , 2016 .

[37]  C. Simó,et al.  Computer assisted proof for normally hyperbolic invariant manifolds , 2011, 1105.1277.

[38]  Wolf-Jürgen Beyn,et al.  Numerical Taylor expansions of invariant manifolds in large dynamical systems , 1998, Numerische Mathematik.

[39]  Gianni Arioli,et al.  Computer-Assisted Methods for the Study of Stationary Solutions in Dissipative Systems, Applied to the Kuramoto–Sivashinski Equation , 2010 .

[40]  Jean-Philippe Lessard,et al.  Rigorous Numerics for Nonlinear Differential Equations Using Chebyshev Series , 2014, SIAM J. Numer. Anal..

[41]  R. Llave,et al.  The parameterization method for invariant manifolds. II: Regularity with respect to parameters , 2003 .

[42]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[43]  Konstantin Mischaikow,et al.  Global smooth solution curves using rigorous branch following , 2010, Math. Comput..