Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra
暂无分享,去创建一个
Christian Reinhardt | Jason D. Mireles-James | Jan Bouwe van den Berg | Christian Reinhardt | J. Mireles-James | J. B. Berg
[1] Rafael de la Llave,et al. Numerical calculation of domains of analyticity for perturbation theories in the presence of small divisors , 1992 .
[2] John Guckenheimer,et al. A Survey of Methods for Computing (un)stable Manifolds of Vector Fields , 2006 .
[3] S. Rump. Computational error bounds for multiple or nearly multiple eigenvalues , 2001 .
[4] Rafael de la Llave,et al. A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .
[5] W. Tucker,et al. A Note on the Convergence of Parametrised Non-Resonant Invariant Manifolds , 2008, 0811.4500.
[6] O. Lanford. A computer-assisted proof of the Feigenbaum conjectures , 1982 .
[7] J. Eckmann,et al. A computer-assisted proof of universality for area-preserving maps , 1984 .
[8] Konstantin Mischaikow,et al. Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..
[9] Jean-Philippe Lessard,et al. Stationary Coexistence of Hexagons and Rolls via Rigorous Computations , 2015, SIAM J. Appl. Dyn. Syst..
[10] Jean-Philippe Lessard,et al. Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form , 2015, SIAM J. Appl. Dyn. Syst..
[11] Martin Berz,et al. Rigorous high-precision enclosures of fixed points and their invariant manifolds , 2011 .
[12] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[13] Nobito Yamamoto,et al. A Numerical Verification Method for Solutions of Boundary Value Problems with Local Uniqueness by Banach's Fixed-Point Theorem , 1998 .
[14] H. Koch,et al. Existence and stability of traveling pulse solutions of the FitzHugh–Nagumo equation , 2015 .
[15] Konstantin Mischaikow,et al. Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..
[16] Rafael de la Llave,et al. Computation of Limit Cycles and Their Isochrons: Fast Algorithms and Their Convergence , 2013, SIAM J. Appl. Dyn. Syst..
[17] Jason D. Mireles-James,et al. Computation of Heteroclinic Arcs with Application to the Volume Preserving Hénon Family , 2010, SIAM J. Appl. Dyn. Syst..
[18] S. Chow,et al. Normal Forms and Bifurcation of Planar Vector Fields , 1994 .
[19] M. Berz,et al. Rigorous and accurate enclosure of invariant manifolds on surfaces , 2010 .
[20] Gemma Huguet,et al. A Computational and Geometric Approach to Phase Resetting Curves and Surfaces , 2009, SIAM J. Appl. Dyn. Syst..
[21] R. Canosa,et al. The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces , 2002 .
[22] Götz Alefeld,et al. Iterative improvement of componentwise errorbounds for invariant subspaces belonging to a double or nearly double eigenvalue , 1986, Computing.
[23] R. Canosa,et al. The parameterization method for invariant manifolds II: regularity with respect to parameters , 2002 .
[24] Marta Canadell,et al. Parameterization Method for Computing Quasi-periodic Reducible Normally Hyperbolic Invariant Tori , 2014 .
[25] J. D. M. James,et al. Computation of maximal local (un)stable manifold patches by the parameterization method , 2015, 1508.02615.
[26] Jean-Philippe Lessard,et al. Global Bifurcation Diagrams of Steady States of Systems of PDEs via Rigorous Numerics: a 3-Component Reaction-Diffusion System , 2013 .
[27] John Guckenheimer,et al. A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.
[28] J. D. M. James. Quadratic Volume-Preserving Maps: (Un)stable Manifolds, Hyperbolic Dynamics, and Vortex-Bubble Bifurcations , 2013 .
[29] Jean-Philippe Lessard,et al. Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach , 2015, Math. Comput..
[30] Konstantin Mischaikow,et al. Rigorous A Posteriori Computation of (Un)Stable Manifolds and Connecting Orbits for Analytic Maps , 2013, SIAM J. Appl. Dyn. Syst..
[31] J. D. M. James. Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds , 2015 .
[32] R. Llave,et al. The parameterization method for invariant manifolds III: overview and applications , 2005 .
[33] Björn Sandstede,et al. Propagation of hexagonal patterns near onset , 2003, European Journal of Applied Mathematics.
[34] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[35] J. Lessard,et al. Global bifurcation diagram of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system , 2015, 1511.01414.
[36] J. Mondelo,et al. The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations , 2016 .
[37] C. Simó,et al. Computer assisted proof for normally hyperbolic invariant manifolds , 2011, 1105.1277.
[38] Wolf-Jürgen Beyn,et al. Numerical Taylor expansions of invariant manifolds in large dynamical systems , 1998, Numerische Mathematik.
[39] Gianni Arioli,et al. Computer-Assisted Methods for the Study of Stationary Solutions in Dissipative Systems, Applied to the Kuramoto–Sivashinski Equation , 2010 .
[40] Jean-Philippe Lessard,et al. Rigorous Numerics for Nonlinear Differential Equations Using Chebyshev Series , 2014, SIAM J. Numer. Anal..
[41] R. Llave,et al. The parameterization method for invariant manifolds. II: Regularity with respect to parameters , 2003 .
[42] Willy Govaerts,et al. Numerical methods for bifurcations of dynamical equilibria , 1987 .
[43] Konstantin Mischaikow,et al. Global smooth solution curves using rigorous branch following , 2010, Math. Comput..