Application of Bioinformatics for the Search of Novel Anti-Viral Therapies: Rational Design of Anti-Herpes Agents

[1]  D. Wiley,et al.  Structure-Based Analysis of the Herpes Simplex Virus Glycoprotein D Binding Site Present on Herpesvirus Entry Mediator HveA (HVEM) , 2002, Journal of Virology.

[2]  Santiago Vilar,et al.  Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. , 2008, Current topics in medicinal chemistry.

[3]  Maykel Pérez González,et al.  Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds. , 2007, Toxicology and applied pharmacology.

[4]  Maykel Pérez González,et al.  Quantitative structure-carcinogenicity relationship for detecting structural alerts in nitroso compounds: species, rat; sex, female; route of administration, gavage. , 2008 .

[5]  M. Pregnolato,et al.  Molecular modeling and synthesis of inhibitors of herpes simplex virus type 1 uracil-DNA glycosylase. , 1999, Journal of medicinal chemistry.

[6]  Humberto González-Díaz Editorial [Hot topic: QSAR and Complex Networks in Pharmaceutical Design, Microbiology, Parasitology, Toxicology, Cancer and Neurosciences (Executive Editor: Humberto Gonzalez-Diaz)] , 2010 .

[7]  D. Filman,et al.  The Positively Charged Surface of Herpes Simplex Virus UL42 Mediates DNA Binding* , 2008, Journal of Biological Chemistry.

[8]  D. Stammers,et al.  BMC Structural Biology BioMed Central , 2006 .

[9]  K. Chou Pseudo Amino Acid Composition and its Applications in Bioinformatics, Proteomics and System Biology , 2009 .

[10]  J. Dorado,et al.  Ontologies of drug discovery and design for neurology, cardiology and oncology. , 2010, Current pharmaceutical design.

[11]  Ernesto Estrada,et al.  Generalized Topological Indices. Modeling Gas-Phase Rate Coefficients of Atmospheric Relevance , 2007, J. Chem. Inf. Model..

[12]  H. González-Díaz,et al.  Review of QSAR models for enzyme classes of drug targets: Theoretical background and applications in parasites, hosts, and other organisms. , 2010, Current pharmaceutical design.

[13]  E. Uriarte,et al.  Multi-target QPDR classification model for human breast and colon cancer-related proteins using star graph topological indices , 2008, Journal of Theoretical Biology.

[14]  Chu Wang,et al.  Crystal Structure of the HSV-1 Fc Receptor Bound to Fc Reveals a Mechanism for Antibody Bipolar Bridging , 2006, PLoS biology.

[15]  Maykel Pérez González,et al.  Variable selection methods in QSAR: an overview. , 2008, Current topics in medicinal chemistry.

[16]  H González-Díaz Network topological indices, drug metabolism, and distribution. , 2010, Current drug metabolism.

[17]  A. Loregian,et al.  Specific Residues in the Connector Loop of the Human Cytomegalovirus DNA Polymerase Accessory Protein UL44 Are Crucial for Interaction with the UL54 Catalytic Subunit , 2004, Journal of Virology.

[18]  G. Elion,et al.  Inhibition of herpes simplex virus-induced DNA polymerase activity and viral DNA replication by 9-(2-hydroxyethoxymethyl)guanine and its triphosphate , 1979 .

[19]  S. Yamazaki,et al.  Gender specific drug metabolism of PF-02341066 in rats--role of sulfoconjugation. , 2010, Current drug metabolism.

[20]  E Estrada,et al.  Modeling chromatographic parameters by a novel graph theoretical sub-structural approach. , 1999, Journal of chromatography. A.

[21]  P Schelling,et al.  Nucleoside binding site of Herpes simplex type 1 thymidine kinase analyzed by X‐ray crystallography , 2000, Proteins.

[22]  Aliuska Morales Helguera,et al.  Quantitative structure-activity relationship modelling of the carcinogenic risk of nitroso compounds using regression analysis and the TOPS-MODE approach , 2010, SAR and QSAR in environmental research.

[23]  A. Brancale,et al.  The application of phosphoramidate protide technology to acyclovir confers anti-HIV inhibition. , 2009, Journal of medicinal chemistry.

[24]  Grace Patlewicz,et al.  Current topics on software use in medicinal chemistry: intellectual property, taxes, and regulatory issues. , 2008, Current topics in medicinal chemistry.

[25]  Ernesto Estrada,et al.  Edge Adjacency Relationships and a Novel Topological Index Related to Molecular Volume , 1995, J. Chem. Inf. Comput. Sci..

[26]  E Estrada,et al.  In silico studies for the rational discovery of anticonvulsant compounds. , 2000, Bioorganic & medicinal chemistry.

[27]  Jan Balzarini,et al.  Crystal Structure of Varicella Zoster Virus Thymidine Kinase* , 2003, Journal of Biological Chemistry.

[28]  Han van de Waterbeemd,et al.  Chemometric methods in molecular design , 1995 .

[29]  C. Boshoff,et al.  Crystal structure of a vFlip-IKKgamma complex: insights into viral activation of the IKK signalosome. , 2008, Molecular cell.

[30]  Enrique Molina Pérez,et al.  Design of novel antituberculosis compounds using graph-theoretical and substructural approaches , 2009, Molecular Diversity.

[31]  Maykel Pérez González,et al.  A topological substructural approach applied to the computational prediction of rodent carcinogenicity. , 2005, Bioorganic & medicinal chemistry.

[32]  W. Bornmann,et al.  Molecular–Genetic PET Imaging Using an HSV1-tk Mutant Reporter Gene with Enhanced Specificity to Acycloguanosine Nucleoside Analogs , 2009, Journal of Nuclear Medicine.

[33]  Kuo-Chen Chou,et al.  Drug candidates from traditional chinese medicines. , 2008, Current topics in medicinal chemistry.

[34]  Ernesto Estrada,et al.  Structural contributions of substrates to their binding to P-Glycoprotein. A TOPS-MODE approach. , 2010, Current pharmaceutical design.

[35]  S. Soong,et al.  Adenine arabinoside therapy of biopsy-proved herpes simplex encephalitis. , 1977, Journal of the Medical Association of the State of Alabama.

[36]  T. Jardetzky,et al.  Structure of a trimeric variant of the Epstein–Barr virus glycoprotein B , 2009, Proceedings of the National Academy of Sciences.

[37]  C. Monnerjahn,et al.  Structural basis for the dual thymidine and thymidylate kinase activity of herpes thymidine kinases. , 2003, Structure.

[38]  K. Chou,et al.  Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks. , 2009, Bioorganic & medicinal chemistry.

[39]  R. Eisenberg,et al.  Crystal structure of the conserved herpesvirus fusion regulator complex gH–gL , 2010, Nature Structural &Molecular Biology.

[40]  P. Nordlund,et al.  Crystal structure of the shutoff and exonuclease protein from the oncogenic Kaposi’s sarcoma‐associated herpesvirus , 2009, The FEBS journal.

[41]  A. Sharff,et al.  Molecular shapes of transcription factors TFIIB and VP16 in solution: implications for recognition. , 2001, Biochemistry.

[42]  K. Chou Graphic rule for drug metabolism systems. , 2010, Current drug metabolism.

[43]  P. Selzer,et al.  Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. , 2000, Journal of medicinal chemistry.

[44]  R. Linhardt,et al.  Structural Analysis of the Sulfotransferase (3-O-Sulfotransferase Isoform 3) Involved in the Biosynthesis of an Entry Receptor for Herpes Simplex Virus 1* , 2004, Journal of Biological Chemistry.

[45]  E Estrada,et al.  Novel local (fragment-based) topological molecular descriptors for QSpr/QSAR and molecular design. , 2001, Journal of molecular graphics & modelling.

[46]  Kuo-Chen Chou,et al.  Molecular modeling of cytochrome P450 and drug metabolism. , 2010, Current drug metabolism.

[47]  L. G. Pérez-Montoto,et al.  3D entropy and moments prediction of enzyme classes and experimental-theoretic study of peptide fingerprints in Leishmania parasites. , 2009, Biochimica et biophysica acta.

[48]  J. Svendsen,et al.  Evidence for a direct antitumor mechanism of action of bovine lactoferricin. , 2002, Anticancer research.

[49]  H. Schaeffer,et al.  Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Ovidiu Ivanciuc Machine Learning Quantitative Structure-Activity Relationships (QSAR) for Peptides Binding to the Human Amphiphysin-1 SH3 Domain , 2009 .

[51]  Ramón García-Domenech,et al.  Designing sedative/hypnotic compounds from a novel substructural graph-theoretical approach , 1998, Journal of computer-aided molecular design.

[52]  Humberto González-Díaz,et al.  Editorial [Hot Topic: Quantitative studies on Structure-Activity and Structure-Property Relationships (QSAR/QSPR) (Guest Editor: Humberto Gonzalez-Diaz)] , 2008 .

[53]  Ron D. Appel,et al.  ExPASy: the proteomics server for in-depth protein knowledge and analysis , 2003, Nucleic Acids Res..

[54]  D. Wiley,et al.  Structure-Based Mutagenesis of Herpes Simplex Virus Glycoprotein D Defines Three Critical Regions at the gD-HveA/HVEM Binding Interface , 2003, Journal of Virology.

[55]  Enrique Molina Pérez,et al.  Designing novel antitrypanosomal agents from a mixed graph‐theoretical substructural approach , 2009, J. Comput. Chem..

[56]  E. De Clercq,et al.  Synthesis and antiviral evaluation of cis-substituted cyclohexenyl and cyclohexanyl nucleosides. , 2005, Journal of medicinal chemistry.

[57]  Ovidiu Ivanciuc,et al.  Weka machine learning for predicting the phospholipidosis inducing potential. , 2008, Current topics in medicinal chemistry.

[58]  Sapna Sharma,et al.  Fusion-Deficient Insertion Mutants of Herpes Simplex Virus Type 1 Glycoprotein B Adopt the Trimeric Postfusion Conformation , 2009, Journal of Virology.

[59]  J. Scheller,et al.  Synthetic Mimetics of the gp130 Binding Site for Viral Interleukin‐6 as Inhibitors of the vIL‐6–gp130 Interaction , 2008, Chemical biology & drug design.

[60]  Maykel Pérez González,et al.  Applications of 2D descriptors in drug design: a DRAGON tale. , 2008, Current topics in medicinal chemistry.

[61]  Ana B. Porto-Pazos,et al.  Artificial intelligence techniques for colorectal cancer drug metabolism: ontology and complex network. , 2010, Current drug metabolism.

[62]  Kunal Roy,et al.  Exploring QSARs with Extended Topochemical Atom (ETA) indices for modeling chemical and drug toxicity. , 2010, Current pharmaceutical design.

[63]  Crystal structure of the conserved core of the herpes simplex virus transcriptional regulatory protein VP16. , 1999, Genes & development.

[64]  E. Estrada Structure-mutagenicity relationships in 2-furylethylene derivatives. A molecular orbital study of the role of nitro groups. , 1998, Mutation research.

[65]  S. Harrison,et al.  Crystal Structure of Glycoprotein B from Herpes Simplex Virus 1 , 2006, Science.

[66]  P. Herdewijn,et al.  Stereoelectronic properties of five anti-HSV-1 2'-deoxynucleosides analogues with heterocyclic substituents in the 5-position: a comparison with BVDU. , 1994, Antiviral research.

[67]  Humberto González-Díaz,et al.  Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species. , 2010, Bioorganic & medicinal chemistry.

[68]  James A. Platts,et al.  Estimation of Molecular Linear Free Energy Relation Descriptors Using a Group Contribution Approach , 1999, J. Chem. Inf. Comput. Sci..

[69]  J. Champness,et al.  Isosteres of the DNA polymerase inhibitor aphidicolin as potential antiviral agents against human herpes viruses. , 1993, Journal of medicinal chemistry.

[70]  Francisco Torrens,et al.  Topological Charge-Transfer Indices: From Small Molecules to Proteins , 2009 .

[71]  Mahmud Tareq Hassan Khan,et al.  Ligand-based computer-aided discovery of tyrosinase inhibitors. Applications of the TOMOCOMD-CARDD method to the elucidation of new compounds. , 2010, Current pharmaceutical design.

[72]  Julio Caballero,et al.  Artificial neural networks from MATLAB in medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN): application to the prediction of the antagonistic activity against human platelet thrombin receptor (PAR-1). , 2008, Current topics in medicinal chemistry.

[73]  S. Yokoyama,et al.  Crystal Structure of Epstein-Barr Virus DNA Polymerase Processivity Factor BMRF1* , 2009, The Journal of Biological Chemistry.

[74]  Lourdes Santana,et al.  Unified QSAR approach to antimicrobials. Part 2: predicting activity against more than 90 different species in order to halt antibacterial resistance. , 2007, Bioorganic & medicinal chemistry.

[75]  Humberto González-Díaz,et al.  Multi-target spectral moment: QSAR for antifungal drugs vs. different fungi species. , 2009, European journal of medicinal chemistry.

[76]  G. Folkers,et al.  Zur Entwicklung eines Pharmakophormodells für thymidinkinaseabhängige, nukleosidanaloge Virostatika , 1989 .

[77]  Isela García,et al.  QSAR & complex network study of the HMGR inhibitors structural diversity. , 2010, Current drug metabolism.

[78]  C. Debouck,et al.  Active site cavity of herpesvirus proteases revealed by the crystal structure of herpes simplex virus protease/inhibitor complex. , 1997, Biochemistry.

[79]  Kuo-Chen Chou,et al.  Pharmacogenomics and personalized use of drugs. , 2008, Current topics in medicinal chemistry.

[80]  F. Quiocho,et al.  Architecture of the herpes simplex virus major capsid protein derived from structural bioinformatics. , 2003, Journal of molecular biology.

[81]  D. Filman,et al.  The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase. , 2000, Molecular cell.

[82]  Mahmud Tareq Hassan Khan,et al.  Predictions of the ADMET properties of candidate drug molecules utilizing different QSAR/QSPR modelling approaches. , 2010, Current drug metabolism.

[83]  Thomas Lengauer,et al.  Computational methods for biomolecular docking. , 1996, Current opinion in structural biology.

[84]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[85]  P. Tucker,et al.  The Crystal Structure of the Herpes Simplex Virus 1 ssDNA-binding Protein Suggests the Structural Basis for Flexible, Cooperative Single-stranded DNA Binding* , 2005, Journal of Biological Chemistry.

[86]  G. Folkers,et al.  Drug resistance of herpes simplex virus type 1--structural considerations at the molecular level of the thymidine kinase. , 1998, European journal of biochemistry.

[87]  J. Griffith,et al.  Two-dimensional crystallization of herpes simplex virus type 1 single-stranded DNA-binding protein, ICP8, on a lipid monolayer. , 2004, Biochimica et biophysica acta.

[88]  R. Eisenberg,et al.  Bimolecular Complementation Defines Functional Regions of Herpes Simplex Virus gB That Are Involved with gH/gL as a Necessary Step Leading to Cell Fusion , 2010, Journal of Virology.

[89]  L. Pearl,et al.  The structural basis of specific base-excision repair by uracil–DNA glycosylase , 1996, Nature.

[90]  Alessandro Giuliani,et al.  Proteins as Networks: A Mesoscopic Approach Using Haemoglobin Molecule as Case Study , 2009 .

[91]  S. Vilar,et al.  A network-QSAR model for prediction of genetic-component biomarkers in human colorectal cancer. , 2009, Journal of theoretical biology.

[92]  E. Novellino,et al.  Homology modelling and docking studies on Varicella Zoster Virus Thymidine kinase. , 2003, European journal of medicinal chemistry.

[93]  K. Chou,et al.  Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. , 2008, Bioorganic & medicinal chemistry.

[94]  Humberto González-Díaz,et al.  Multi-target spectral moment: QSAR for antiviral drugs vs. different viral species. , 2009, Analytica chimica acta.

[95]  T. Ho,et al.  Emodin is a novel alkaline nuclease inhibitor that suppresses herpes simplex virus type 1 yields in cell cultures , 2008, British journal of pharmacology.

[96]  R. Esnouf,et al.  Selective abolishment of pyrimidine nucleoside kinase activity of herpes simplex virus type 1 thymidine kinase by mutation of alanine-167 to tyrosine. , 2000, Molecular pharmacology.

[97]  Maykel Pérez González,et al.  Quantitative structure activity relationship for the computational prediction of nitrocompounds carcinogenicity. , 2006, Toxicology.

[98]  J. Bajorath,et al.  Docking and scoring in virtual screening for drug discovery: methods and applications , 2004, Nature Reviews Drug Discovery.

[99]  Edward H Egelman,et al.  The bipolar filaments formed by herpes simplex virus type 1 SSB/recombination protein (ICP8) suggest a mechanism for DNA annealing. , 2009, Journal of molecular biology.

[100]  Enrique Fernández-Blanco,et al.  Drug discovery and design for complex diseases through QSAR computational methods. , 2010, Current pharmaceutical design.

[101]  Ernesto Estrada,et al.  Spectral Moments of the Edge Adjacency Matrix in Molecular Graphs. 3. Molecules Containing Cycles , 1998, J. Chem. Inf. Comput. Sci..

[102]  Ernesto Estrada,et al.  Spectral Moments of the Edge-Adjacency Matrix of Molecular Graphs, 2. Molecules Containing Heteroatoms and QSAR Applications , 1997, J. Chem. Inf. Comput. Sci..

[103]  D. Filman,et al.  Crystal Structure of the Cytomegalovirus DNA Polymerase Subunit UL44 in Complex with the C Terminus from the Catalytic Subunit , 2006, Journal of Biological Chemistry.

[104]  D. Wiley,et al.  Crystallization and preliminary diffraction studies of the ectodomain of the envelope glycoprotein D from herpes simplex virus 1 alone and in complex with the ectodomain of the human receptor HveA. , 2002, Acta crystallographica. Section D, Biological crystallography.

[105]  Gerd Folkers,et al.  Computer-aided active-site-directed modeling of the Herpes Simplex Virus 1 and human thymidine kinase , 1991, J. Comput. Aided Mol. Des..

[106]  L. G. Pérez-Montoto,et al.  Predicting drugs and proteins in parasite infections with topological indices of complex networks: theoretical backgrounds, applications, and legal issues. , 2010, Current pharmaceutical design.

[107]  R. N. Miguel,et al.  A mutation in helicase motif IV of herpes simplex virus type 1 UL5 that results in reduced growth in vitro and lower virulence in a murine infection model is related to the predicted helicase structure. , 2009, The Journal of general virology.

[108]  Håvard Jenssen,et al.  Modelling of anti‐HSV activity of lactoferricin analogues using amino acid descriptors , 2005, Journal of peptide science : an official publication of the European Peptide Society.

[109]  F. Prado-Prado,et al.  Predicting antimicrobial drugs and targets with the MARCH-INSIDE approach. , 2008, Current topics in medicinal chemistry.

[110]  L. Gustafson,et al.  Plasma homocysteine and markers of bone metabolism in psychogeriatric patients. , 2005, Scandinavian journal of clinical and laboratory investigation.

[111]  C. George,et al.  Understanding how the herpes thymidine kinase orchestrates optimal sugar and nucleobase conformations to accommodate its substrate at the active site: a chemical approach. , 2005, Journal of the American Chemical Society.

[112]  Kenneth J. Miller,et al.  Additivity methods in molecular polarizability , 1990 .

[113]  Arup K. Ghose,et al.  Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics , 1989, J. Chem. Inf. Comput. Sci..

[114]  L. G. Pérez-Montoto,et al.  Review of MARCH-INSIDE & complex networks prediction of drugs: ADMET, anti-parasite activity, metabolizing enzymes and cardiotoxicity proteome biomarkers. , 2010, Current drug metabolism.

[115]  M. Tomita,et al.  Lactoferricin derived from milk protein lactoferrin. , 2003, Current pharmaceutical design.

[116]  D. Stammers,et al.  Mutations Distal to the Substrate Site Can Affect Varicella Zoster Virus Thymidine Kinase Activity: Implications for Drug Design , 2006, Molecular Pharmacology.

[117]  Jiajia Shen Computational Analysis of Amino Acid Mutation: A Proteome Wide Perspective , 2009 .

[118]  Luhua Lai,et al.  A New Atom-Additive Method for Calculating Partition Coefficients , 1997, J. Chem. Inf. Comput. Sci..

[119]  Prediction of Activity, Synthesis and Biological Testing of anti‐HSV Active Peptides , 2006, Chemical biology & drug design.

[120]  A. Domb,et al.  Inhibition of Herpes Simplex Virus by Polyamines , 2009, Antiviral chemistry & chemotherapy.

[121]  P Wutzler,et al.  Identification of individual structural fragments of N,N'-(bis-5-nitropyrimidyl)dispirotripiperazine derivatives for cytotoxicity and antiherpetic activity allows the prediction of new highly active compounds. , 2007, The Journal of antimicrobial chemotherapy.

[122]  J. Culp,et al.  Crystal structure of varicella-zoster virus protease. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[123]  Nabil Semmar,et al.  Mathematical methods to analysis of topology, functional variability and evolution of metabolic systems based on different decomposition concepts. , 2010, Current drug metabolism.

[124]  R. Bruccoleri,et al.  Structure-function studies of the herpes simplex virus type 1 DNA polymerase , 1990, Journal of virology.