Relationship Between γ′ Phase Degradation and In-Service GTD-111 First-Stage Blade Local Temperature

[1]  A. Kermanpur,et al.  On the precipitation hardening of the directionally solidified GTD-111 Ni-base superalloy: Microstructures and mechanical properties , 2017 .

[2]  Carlos Enrique Niño Bohórquez,et al.  Study of GTD-111 Superalloy Microstructural Evolution During High-Temperature Aging and After Rejuvenation Treatments , 2015, Metallography, Microstructure, and Analysis.

[3]  L. Lou,et al.  Effect of Solidification Condition and Carbon Content on the Morphology of MC Carbide in Directionally Solidified Nickel-base Superalloys , 2014 .

[4]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[5]  P. Voorhees,et al.  Growth and Coarsening: Ostwald Ripening in Material Processing , 2010 .

[6]  Petr Lukáš,et al.  High-cycle fatigue of Ni-base superalloy Inconel 713LC , 2010 .

[7]  C. Jo,et al.  Temperature dependence of MC decomposition behavior in Ni-base superalloy GTD 111 , 2008 .

[8]  Sudhangshu Bose,et al.  High Temperature Coatings , 2007 .

[9]  R. Reed The Superalloys: Fundamentals and Applications , 2006 .

[10]  R. Reed The Superalloys by Roger C. Reed , 2006 .

[11]  Seyed Mojtaba Zebarjad,et al.  Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters , 2006 .

[12]  A. Baldan,et al.  Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories , 2002 .

[13]  Roderick I. L. Guthrie,et al.  Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111 , 2002 .

[14]  S. Sajjadi,et al.  A high temperature deformation mechanism map for the high performance Ni-base superalloy GTD-111 , 2001 .

[15]  N. Cheruvu,et al.  Recovery of Microstructure and Mechanical Properties of Service Run GTD-111 DS Buckets , 1999 .

[16]  G. R. Leverant,et al.  Influence of Metal Temperature on Base Material and Coating Degradation of GTD-111 Buckets , 1998 .

[17]  Z. Mišković,et al.  Microstructure and stress-rupture life of polycrystal, directionally solidified, and single crystal castings of nickel-based IN 939 superalloy , 1998 .

[18]  Joseph A. Daleo,et al.  GTD111 Alloy Material Study , 1996 .

[19]  W. Brentnall,et al.  Service Temperature Estimation of Turbine Blades Based on Microstructural Observations , 1990 .

[20]  T. Duerig,et al.  The formation of grain boundary void in cast nickel base alloys after cold working and annealing , 1982 .

[21]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[22]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[23]  C. Yuan,et al.  On Healing Mechanism of Cast Porosities in Cast Ni-Based Superalloy by Hot Isostatic Pressing , 2017 .

[24]  K. Ishizaka,et al.  Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines,Mitsubishi Heavy Industries Technical Review Vol.52 No.4(2015) , 2015 .

[25]  P. Schilke Advanced Gas Turbine Materials and Coatings , 2004 .

[26]  D. H. Kim,et al.  ETA Phase Formation During Thermal Exposure and Its Effect on Mechanical Properties in Ni-Base Superalloy GTD 111 , 2004 .

[27]  P. W. Schilke,et al.  Advanced materials propel progress in land-based gas turbines , 1992 .

[28]  Peter W Voorhees,et al.  The theory of Ostwald ripening , 1985 .