Relationship Between γ′ Phase Degradation and In-Service GTD-111 First-Stage Blade Local Temperature
暂无分享,去创建一个
J. Alvarado-Orozco | E. Martínez-Franco | J. González-Hernández | D. G. Espinosa-Arbeláez | J. A. Villada | R. G. Bayro-Lazcano
[1] A. Kermanpur,et al. On the precipitation hardening of the directionally solidified GTD-111 Ni-base superalloy: Microstructures and mechanical properties , 2017 .
[2] Carlos Enrique Niño Bohórquez,et al. Study of GTD-111 Superalloy Microstructural Evolution During High-Temperature Aging and After Rejuvenation Treatments , 2015, Metallography, Microstructure, and Analysis.
[3] L. Lou,et al. Effect of Solidification Condition and Carbon Content on the Morphology of MC Carbide in Directionally Solidified Nickel-base Superalloys , 2014 .
[4] Johannes E. Schindelin,et al. Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.
[5] P. Voorhees,et al. Growth and Coarsening: Ostwald Ripening in Material Processing , 2010 .
[6] Petr Lukáš,et al. High-cycle fatigue of Ni-base superalloy Inconel 713LC , 2010 .
[7] C. Jo,et al. Temperature dependence of MC decomposition behavior in Ni-base superalloy GTD 111 , 2008 .
[8] Sudhangshu Bose,et al. High Temperature Coatings , 2007 .
[9] R. Reed. The Superalloys: Fundamentals and Applications , 2006 .
[10] R. Reed. The Superalloys by Roger C. Reed , 2006 .
[11] Seyed Mojtaba Zebarjad,et al. Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters , 2006 .
[12] A. Baldan,et al. Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories , 2002 .
[13] Roderick I. L. Guthrie,et al. Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111 , 2002 .
[14] S. Sajjadi,et al. A high temperature deformation mechanism map for the high performance Ni-base superalloy GTD-111 , 2001 .
[15] N. Cheruvu,et al. Recovery of Microstructure and Mechanical Properties of Service Run GTD-111 DS Buckets , 1999 .
[16] G. R. Leverant,et al. Influence of Metal Temperature on Base Material and Coating Degradation of GTD-111 Buckets , 1998 .
[17] Z. Mišković,et al. Microstructure and stress-rupture life of polycrystal, directionally solidified, and single crystal castings of nickel-based IN 939 superalloy , 1998 .
[18] Joseph A. Daleo,et al. GTD111 Alloy Material Study , 1996 .
[19] W. Brentnall,et al. Service Temperature Estimation of Turbine Blades Based on Microstructural Observations , 1990 .
[20] T. Duerig,et al. The formation of grain boundary void in cast nickel base alloys after cold working and annealing , 1982 .
[21] Carl Wagner,et al. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.
[22] I. Lifshitz,et al. The kinetics of precipitation from supersaturated solid solutions , 1961 .
[23] C. Yuan,et al. On Healing Mechanism of Cast Porosities in Cast Ni-Based Superalloy by Hot Isostatic Pressing , 2017 .
[24] K. Ishizaka,et al. Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines,Mitsubishi Heavy Industries Technical Review Vol.52 No.4(2015) , 2015 .
[25] P. Schilke. Advanced Gas Turbine Materials and Coatings , 2004 .
[26] D. H. Kim,et al. ETA Phase Formation During Thermal Exposure and Its Effect on Mechanical Properties in Ni-Base Superalloy GTD 111 , 2004 .
[27] P. W. Schilke,et al. Advanced materials propel progress in land-based gas turbines , 1992 .
[28] Peter W Voorhees,et al. The theory of Ostwald ripening , 1985 .