Bulk, surface and corner free-energy series for the chromatic polynomial on the square and triangular lattices

We present an efficient algorithm for computing the partition function of the q-colouring problem (chromatic polynomial) on regular two-dimensional lattice strips. Our construction involves writing the transfer matrix as a product of sparse matrices, each of dimension ~ 3^m, where m is the number of lattice spacings across the strip. As a specific application, we obtain the large-q series of the bulk, surface and corner free energies of the chromatic polynomial. This extends the existing series for the square lattice by 32 terms, to order q^{-79}. On the triangular lattice, we verify Baxter's analytical expression for the bulk free energy (to order q^{-40}), and we are able to conjecture exact product formulae for the surface and corner free energies.

[1]  M. Nightingale,et al.  Critical behaviour of the two-dimensional Potts model with a continuous number of states; A finite size scaling analysis , 1982 .

[2]  Hubert Saleur,et al.  Zeroes of chromatic polynomials: A new approach to Beraha conjecture using quantum groups , 1990 .

[3]  R. Baxter,et al.  Chromatic polynomials of large triangular lattices , 1987 .

[4]  Cristopher Moore,et al.  Height Representation, Critical Exponents, and Ergodicity in the Four-State Triangular Potts Antiferromagnet , 1999, cond-mat/9902295.

[5]  Jesper Lykke Jacobsen,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models , 2004 .

[6]  Henley,et al.  Conformal charge and exact exponents in the n=2 fully packed loop model. , 1994, Physical Review Letters.

[7]  Alan D. Sokal,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. I. General Theory and Square-Lattice Chromatic Polynomial , 2001 .

[8]  I. Enting Inclusion-exclusion relations on the triangular lattice , 1987 .

[9]  Series expansions from the finite lattice method , 1977 .

[10]  G. Royle Planar Triangulations with Real Chromatic Roots Arbitrarily Close to 4 , 2005, math/0511304.

[11]  P. Fendley,et al.  Tutte chromatic identities from the Temperley-Lieb algebra , 2007, 0711.0016.

[12]  V. Pasquier,et al.  Common structures between finite systems and conformal field theories through quantum groups , 1990 .

[13]  H. Saleur,et al.  The antiferromagnetic Potts model in two dimensions: Berker-Kadanoff phase, antiferromagnetic transition, and the role of Beraha numbers , 1991 .

[14]  R. Baxter Critical antiferromagnetic square-lattice Potts model , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[15]  R. Baxter,et al.  q colourings of the triangular lattice , 1986 .

[16]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .

[17]  I. Enting Generalised Mobius functions for rectangles on the square lattice , 1978 .

[18]  H. Whitney A logical expansion in mathematics , 1932 .

[19]  Alan D. Sokal,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. III. Triangular-Lattice Chromatic Polynomial , 2002, cond-mat/0204587.

[20]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[21]  A. V. Bakaev,et al.  Series expansions for the q-colour problem on the square and cubic lattices , 1994 .

[22]  R. J. Baxter,et al.  Colorings of a Hexagonal Lattice , 1970 .

[23]  Jesper Lykke Jacobsen,et al.  Phase diagram of the chromatic polynomial on a torus , 2007 .

[24]  Laboratoire de Physique Théorique Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models IV . Chromatic polynomial with cyclic boundary conditions , 2007 .

[25]  K. Dean,et al.  A 20 By , 2009 .

[26]  Ericka Stricklin-Parker,et al.  Ann , 2005 .