Effect of substitution by cerium on the activity of LaMnO3 perovskite in methane combustion

This study concerns the effect of lanthanum substitution by cerium on the catalytic activity of La1-xCexMnO3 catalysts and its relation to their physico-chemical characteristics. Samples of pure and cerium-substituted lanthanum manganese perovskites. La1-xCexMnO3 with x = 0.1-0.5 and LaCexMnO3 with x = 0.1, 0.2 and 0.3, were prepared by the citrate method and calcined 5 h at 973 or 1073 K. All samples were characterized by XRD, XPS and oxygen TPD and had their specific surface area (SSA) determined by nitrogen adsorption. The catalytic activity was determined, using 0.1 g catalyst, 1% methane in air at a flow rate of 75 ml/min (GHSV = 45,000 ml/g(cat) h). Substitution with cerium affects significantly the physico-chemical properties of individual compositions. It slows the rate of perovskite phase formation, increases the SSA, has an effect on thermal stability and modifies the oxygen desorption characteristics. However, these changes do not correlate in the expected way with changes in activity for methane combustion. Substitution with cerium or addition of cerium over the formal stoichiometry were positive only for x = 0.1 in samples calcined 5 h at 973 K. Higher x values resulted in lower activity. (C) 2002 Elsevier Science B.V. All rights reserved.

[1]  N. Imanishi,et al.  Phase relation in the system (La1−xAx)1−yMnO3+z (A=Sr and Ca) , 1991 .

[2]  D. Trimm,et al.  Catalytic combustion of methane , 1995 .

[3]  S. Järås,et al.  Catalytic Materials for High-Temperature Combustion , 1993 .

[4]  T. Seiyama,et al.  Total Oxidation of Hydrocarbons on Perovskite Oxides , 1992 .

[5]  D. Klvana,et al.  Design criteria for high‐temperature combustion catalysts , 2000 .

[6]  H. Cui,et al.  Catalytic combustion of CH4 and CO on La1−xMxMnO3 perovskites , 1996 .

[7]  K. Eguchi,et al.  Effect of structural modification on the catalytic property of Mn-substituted hexaaluminates , 1990 .

[8]  M. W. Roberts Chemisorption and reaction pathways at metal surfaces: the role of surface oxygen , 1989 .

[9]  K. Eguchi,et al.  Catalytic combustion of methane over various perovskite-type oxides , 1986 .

[10]  B. Delmon,et al.  Oxydes mixtes ou en solution solide sous forme très divisée obtenus par décomposition thermique de précurseurs amorphes , 1973 .

[11]  J. B. Goodenough,et al.  Regular ArticleLaMnO3+δRevisited , 1997 .

[12]  G. Saracco,et al.  Methane combustion on Mg-doped LaMnO3 perovskite catalysts , 1999 .

[13]  J. Chaouki,et al.  Preparation of supported La0.66Sr0.34Ni0.3Co0.7O3 perovskite catalysts and their performance in methane and odorized natural gas combustion , 1997 .

[14]  J. Tascón,et al.  Structure and Reactivity of Perovskite-Type Oxides , 1989 .

[15]  M. Misono,et al.  Catalytic properties of La1 − xA′xFeO3(A′ = Sr,Ce) and La1 − xCexCoO3 , 1985 .

[16]  M. Misono,et al.  Catalytic properties of La1−xA′xMnO3 (A′ = Sr, Ce, Hf) , 1986 .

[17]  W. S. Blazowski,et al.  Catalytic Combustion: An Important Consideration for Future Applications , 1975 .

[18]  Y. N. Lee Synthesis and surface characterization of nanometric La1−xKxMnO3+δ particles , 1999 .

[19]  D. Klvana,et al.  Synthesis and characterization of perovskite catalysts , 1999 .

[20]  G. I. Golodet︠s︡ Heterogeneous Catalytic Reactions Involving Molecular Oxygen , 1983 .

[21]  J. Goodenough,et al.  LaMnO 3+ δ Revisited , 1997 .

[22]  H. Wise,et al.  Perovskite catalysts for methane combustion , 1990 .

[23]  A. Baiker,et al.  Influence of the A-site cation in AMnO3+x and AFeO3+x (A = La, Pr, Nd and Gd) perovskite-type oxides on the catalytic activity for methane combustion , 1994 .

[24]  M. Misono,et al.  Reduction-oxidation and catalytic properties of La1−xSrxCoO3 , 1983 .

[25]  A. Hammouche,et al.  Crystallographic, thermal and electrochemical properties of the system La1−xSrxMnO3 for high temperature solid electrolyte fuel cells , 1989 .

[26]  X. Verykios,et al.  Evaluation of γ-MnO2as a VOC Removal Catalyst: Comparison with a Noble Metal Catalyst☆ , 1998 .

[27]  E. R. Stobbe,et al.  The reduction and oxidation behaviour of manganese oxides , 1999 .

[28]  K. Eguchi,et al.  Catalytic Properties of Pd-Supported Hexaaluminate Catalysts for High-Temperature Catalytic Combustion , 1993 .

[29]  J. Carberry,et al.  Effect of Surface Area on the Oxidation of Methane over SolidOxide Solution Catalyst La0.8Sr0.2MnO3 , 1996 .

[30]  L. Forni,et al.  EPR and XRD as probes for activity and durability of LaMnO3 perovskite-like catalysts , 2000 .

[31]  J. Fierro,et al.  Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites , 2000 .

[32]  W. R. Scott,et al.  Oxidative nonstoichiometry in perovskites, an experimental survey; the defect structure of an oxidized lanthanum manganite by powder neutron diffraction , 1974 .

[33]  L. Marchetti,et al.  Catalytic combustion of methane over perovskites , 1998 .

[34]  A. Primavera,et al.  Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria–zirconia solid solutions , 1999 .

[35]  M. Flytzani-Stephanopoulos,et al.  Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts: I. Catalyst Composition and Activity , 1995 .

[36]  H. Knözinger,et al.  Catalytic combustion of methane on Co/MgO: characterisation of active cobalt sites , 2001 .

[37]  R. E. Hayes,et al.  Introduction to Catalytic Combustion , 1998 .

[38]  L. Pfefferle,et al.  Catalysis in Combustion , 1987 .

[39]  P. Ciambelli,et al.  AMnO3 (A=La, Nd, Sm) and Sm1−xSrxMnO3 perovskites as combustion catalysts: structural, redox and catalytic properties , 2000 .

[40]  G. Saracco,et al.  Sulphur poisoning of LaMn1−xMgxO3 catalysts for natural gas combustion , 2001 .

[41]  B. Delmon,et al.  Evidence of phase cooperation in the LaCoO3–CeO2–Co3O4 catalytic system in relation to activity in methane combustion , 2002 .

[42]  M. Misono,et al.  Catalytic properties and surface states of La1-xCexCoO3 , 1987 .