Some Quotients of Chain Products are Symmetric Chain Orders
暂无分享,去创建一个
Dwight Duffus | Kyle Thayer | Jeremy McKibben-Sanders | D. Duffus | Jeremy McKibben-Sanders | Kyle Thayer
[1] Richard P. Stanley,et al. Quotients of peck posets , 1984 .
[2] William T. Trotter,et al. Explicit matchings in the middle levels of the Boolean lattice , 1988 .
[3] Kelly Kross Jordan,et al. The necklace poset is a symmetric chain order , 2010, J. Comb. Theory, Ser. A.
[4] Jerrold R. Griggs,et al. Venn Diagrams and Symmetric Chain Decompositions in the Boolean Lattice , 2004, Electron. J. Comb..
[5] A. Schilling,et al. Symmetric chain decomposition for cyclic quotients of Boolean algebras and relation to cyclic crystals , 2011, 1107.4073.
[6] A. Tarski,et al. Refinement properties for relational structures , 1964 .
[7] Maurice Pouzet,et al. Sperner Properties for Groups and Relations , 1986, Eur. J. Comb..
[8] de Ng Dick Bruijn,et al. On the set of divisors of a number , 1951 .
[9] Vivek Dhand,et al. Symmetric Chain Decomposition of Necklace Posets , 2011, Electron. J. Comb..
[10] Daniel J. Kleitman,et al. Strong Versions of Sperner's Theorem , 1976, J. Comb. Theory, Ser. A.
[11] K. Engel. Sperner Theory , 1996 .
[12] Jerrold R. Griggs,et al. Sufficient Conditions for a Symmetric Chain Order , 1977 .