Approximate linearized inversion by optimal scaling of prestack depth migration

Linearized inversion provides one possible sense of image amplitude correctness. An image or bandlimited model perturbation has correct amplitudes if it is an approximate inversion, that is, if linearized modeling (demigration), with the image as input, reproduces the data approximately. The theory of linearized acoustic inverse scattering with slowly varying background or macromodel shows that an approximate inversion may be recovered from the output of prestack depth migration by a combination of scaling and filtering. The necessary filter is completely specified by the theory, and the scale factor may be estimated via filtering, linearized modeling, a second migration, and the solution of a small auxiliary inverse problem.

[1]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[2]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[3]  N. Bleistein On the imaging of reflectors in the earth , 1987 .

[4]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[5]  Maarten V. de Hoop,et al.  Generalized Radon transform inversions for reflectivity in anisotropic elastic media , 1997 .

[6]  B. Biondi,et al.  Target-oriented wave-equation inversion , 2006 .

[7]  W. A. Mulder,et al.  A comparison between one-way and two-way wave-equation migration , 2004 .

[8]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[9]  Mark Noble,et al.  Robust elastic nonlinear waveform inversion: Application to real data , 1990 .

[10]  William W. Symes,et al.  Global solution of a linearized inverse problem for the wave equation , 1997 .

[11]  Öz Yilmaz,et al.  Seismic data processing , 1987 .

[12]  G. Chavent,et al.  An optimal true-amplitude least-squares prestack depth-migration operator , 1999 .

[13]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[14]  G. Schuster,et al.  Least-squares migration of incomplete reflection data , 1999 .

[15]  Guy Chavent,et al.  About the stability of the inverse problem in 1-D wave equations—application to the interpretation of seismic profiles , 1979 .

[16]  Maarten V. de Hoop,et al.  Microlocal analysis of seismic inverse scattering in anisotropic elastic media , 2002 .

[17]  C. Shin,et al.  Improved amplitude preservation for prestack depth migration by inverse scattering theory , 2001 .

[18]  G. Lambaré,et al.  Can we quantitatively image complex structures with rays , 2000 .

[19]  A. Guitton Amplitude and kinematic corrections of migrated images for nonunitary imaging operators , 2004 .

[20]  Tiankai Tu,et al.  High Resolution Forward And Inverse Earthquake Modeling on Terascale Computers , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[21]  Fadil Santosa,et al.  An analysis of least-squares velocity inversion , 1989 .

[22]  Yu Zhang,et al.  True-amplitude, angle-domain, common-image gathers from one-way wave-equation migrations , 2007 .

[23]  Gary Cohen Higher-Order Numerical Methods for Transient Wave Equations , 2001 .

[24]  Rakesh A Linearised inverse problem for the wave equation , 1988 .

[25]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[26]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[27]  A. P. E. ten Kroode,et al.  A microlocal analysis of migration , 1998 .

[28]  P. Mora Elastic wave‐field inversion of reflection and transmission data , 1988 .

[29]  Changsoo Shin,et al.  Two-way Vs One-way: A Case Study Style Comparison , 2006 .

[30]  R. Shipp,et al.  Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data , 1999 .

[31]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[32]  Jon F. Claerbout,et al.  Multidimensional recursive filters via a helix , 1998 .

[33]  Douglas E. Miller,et al.  Multiparameter inversion in anisotropic elastic media , 1998 .

[34]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[35]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[36]  William W. Symes,et al.  Reverse time migration with optimal checkpointing , 2007 .

[37]  J. Rickett Illumination-based normalization for wave-equation depth migration , 2003 .

[38]  F. Herrmann,et al.  Sparsity- and continuity-promoting seismic image recovery with curvelet frames , 2008 .

[39]  Antoine Guitton,et al.  Least-square Attenuation of Reverse Time Migration Artifacts , 2006 .

[40]  Andreas Griewank,et al.  Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation , 2000, TOMS.

[41]  G. Herman,et al.  Fast iterative solution of sparsely sampled seismic inverse problems , 1994 .

[42]  Antoine Guitton,et al.  Least-squares attenuation of reverse-time-migration artifacts , 2007 .

[43]  Christiaan C. Stolk,et al.  Microlocal analysis of a seismic linearized inverse problem , 2000 .