Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy.

In the midst of the global climate change phenomenon, mainly caused by fossil fuel burning to provide energy for our daily life and discharge of CO2 into the atmosphere, biogas is one of the important renewable energy sources that can be upgraded and applied as a fuel source for energy in daily life. The advantages of the production of hybrid materials, metal-organic framework (MOF) adsorbents, expected for the biogas upgrading, rely on the bulk separation of CO2 under near-ambient conditions. This review highlights the challenges for MOF adsorbents, which have the greatest upgrading abilities for biogas via selective passage of methane. The key factors improving the ideal MOF materials for these high CO2 capture and selectivity uses for biogas upgrading to produce bio-methane and reduce fossil-fuel CO2 emission will be discussed.

[1]  C. D. Collier,et al.  Further investigation of the effect of framework catenation on hydrogen uptake in metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[2]  E. Gutiérrez‐Puebla,et al.  Isolated Hexanuclear Hydroxo Lanthanide Secondary Building Units in a Rare-Earth Polymeric Framework Based on p-Sulfonatocalix[4]arene , 2010 .

[3]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[4]  P. Sands The United Nations Framework Convention on Climate Change , 1992 .

[5]  Sergey N. Maximoff,et al.  Ab initio carbon capture in open-site metal-organic frameworks. , 2012, Nature chemistry.

[6]  Jeffrey R. Long,et al.  Hydrogen storage in water-stable metal–organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate , 2010 .

[7]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[8]  Mircea Dincă,et al.  Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal-organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru). , 2012, Dalton transactions.

[9]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[10]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[11]  B. Smit,et al.  Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. , 2010, ACS nano.

[12]  Joan F. Brennecke,et al.  Feasibility of using ionic liquids for carbon dioxide capture , 2004 .

[13]  G. Palmisano,et al.  Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs , 2010 .

[14]  J. Atwood,et al.  Flexible metal-organic supramolecular isomers for gas separation. , 2010, Chemical communications.

[15]  S. Gumma,et al.  Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes , 2009 .

[16]  D. D’Alessandro,et al.  Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri , 2011 .

[17]  Nathaniel L Rosi,et al.  Tuning MOF CO2 adsorption properties via cation exchange. , 2010, Journal of the American Chemical Society.

[18]  Shuguang Deng,et al.  Adsorption of CO(2), CH(4), N(2)O, and N(2) on MOF-5, MOF-177, and zeolite 5A. , 2010, Environmental science & technology.

[19]  J. Klinowski,et al.  Microwave-assisted synthesis of metal-organic frameworks. , 2011, Dalton transactions.

[20]  Jie‐Peng Zhang,et al.  Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. , 2009, Journal of the American Chemical Society.

[21]  Craig M. Brown,et al.  Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods , 2010 .

[22]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[23]  K. Horie,et al.  Definition of terms related to polymer blends, composites, and multiphase polymeric materials (IUPAC Recommendations 2004) , 2004 .

[24]  A. Harris,et al.  Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles , 2010 .

[25]  S. Qiu,et al.  New prototype isoreticular metal-organic framework Zn(4)O(FMA)(3) for gas storage. , 2009, Inorganic chemistry.

[26]  C. Serre,et al.  Synthesis of MIL-102, a chromium carboxylate metal-organic framework, with gas sorption analysis. , 2006, Journal of the American Chemical Society.

[27]  Zeng-min Shen,et al.  Adsorption separation of CH4/CO2 on mesocarbon microbeads: Experiment and modeling , 2006 .

[28]  J. Hupp,et al.  An example of node-based postassembly elaboration of a hydrogen-sorbing, metal-organic framework material. , 2008, Inorganic chemistry.

[29]  C. Petit,et al.  Exploring the coordination chemistry of MOF-graphite oxide composites and their applications as adsorbents. , 2012, Dalton transactions.

[30]  Y. Hwang,et al.  Gas‐Sorption Selectivity of CUK‐1: A Porous Coordination Solid Made of Cobalt(II) and Pyridine‐2,4‐ Dicarboxylic Acid , 2007 .

[31]  C. Lamberti,et al.  Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. , 2007, Physical chemistry chemical physics : PCCP.

[32]  S. Sandler,et al.  Molecular simulations for adsorptive separation of CO2/CH4 mixture in metal-exposed, catenated, and charged metal-organic frameworks. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[33]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[34]  J. Hupp,et al.  Post-synthesis alkoxide formation within metal-organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. , 2009, Journal of the American Chemical Society.

[35]  Seth M Cohen,et al.  Isoreticular synthesis and modification of frameworks with the UiO-66 topology. , 2010, Chemical communications.

[36]  Fupei Liang,et al.  Structure, adsorption and magnetic properties of chiral metal-organic frameworks bearing linear trinuclear secondary building blocks. , 2011, Dalton transactions.

[37]  Jun Zhang,et al.  CO2 capture by adsorption: Materials and process development , 2007 .

[38]  H. Noguchi,et al.  Elastic layer-structured metal organic frameworks (ELMs). , 2009, Journal of colloid and interface science.

[39]  L. Valenzano,et al.  Heats of adsorption of CO and CO2 in metal-organic frameworks: Quantum mechanical study of CPO-27-M (M = Mg, Ni, Zn) , 2011 .

[40]  C. Duhayon,et al.  Modular Assembling of [Zr(C 2O 4) 4] 4− and [DabcoH 2] 2+ Units in Supramolecular Hybrid Architectures Including an Open Framework with Reversible Sorption Properties (Dabco = 1,4-Diazabicyclo[2. 2. 2]octane) , 2008 .

[41]  Carlos A. Grande,et al.  Upgrade of Methane from Landfill Gas by Pressure Swing Adsorption , 2005 .

[42]  Wenbin Lin,et al.  Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks: network-structure-dependent catalytic activity. , 2007, Angewandte Chemie.

[43]  B. Peter McGrail,et al.  Metal−Organic Framework Isomers with Diamondoid Networks Constructed of a Semirigid Tetrahedral Linker , 2010 .

[44]  Alexander M. Spokoyny,et al.  Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. , 2010, Chemical communications.

[45]  Chang-Ha Lee,et al.  Kinetic Separation of Landfill Gas by a Two-Bed Pressure Swing Adsorption Process Packed with Carbon Molecular Sieve: Nonisothermal Operation , 2006 .

[46]  A. J. Hernández-Maldonado,et al.  Cu2(pyrazine-2,3-dicarboxylate)2(4,4′-bipyridine) Porous Coordination Sorbents: Activation Temperature, Textural Properties, and CO2 Adsorption at Low Pressure Range , 2010 .

[47]  J. Atwood,et al.  Flexible (breathing) interpenetrated metal-organic frameworks for CO2 separation applications. , 2008, Journal of the American Chemical Society.

[48]  Daqiang Yuan,et al.  Enhancing H2 uptake by "close-packing" alignment of open copper sites in metal-organic frameworks. , 2008, Angewandte Chemie.

[49]  Jun Liu,et al.  Gas-Induced Expansion and Contraction of a Fluorinated Metal−Organic Framework , 2010 .

[50]  Mark D. Allendorf,et al.  The Interaction of Water with MOF-5 Simulated by Molecular Dynamics , 2006 .

[51]  K. S. Knaebel,et al.  Landfill Gas: From Rubbish to Resource , 2003 .

[52]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[53]  K. Fromm,et al.  Coordination polymer networks with O- and N-donors: What they are, why and how they are made , 2006 .

[54]  A. Benin,et al.  Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. , 2009, Journal of the American Chemical Society.

[55]  Stuart R. Batten,et al.  Coordination Polymers: Design, Analysis and Application , 2009 .

[56]  Alexander M. Spokoyny,et al.  Carborane-based metal-organic frameworks as highly selective sorbents for CO(2) over methane. , 2008, Chemical communications.

[57]  Tatsuo C. Kobayashi,et al.  Formation and characterization of crystalline molecular arrays of gas molecules in a 1-dimensional ultramicropore of a porous copper coordination polymer. , 2005, The journal of physical chemistry. B.

[58]  S. Natarajan,et al.  Offene Gerüststrukturen von Übergangsmetallen , 2008 .

[59]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[60]  H. Fjellvåg,et al.  Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. , 2008, Chemical communications.

[61]  C. Serre,et al.  Single crystal X-ray diffraction studies of carbon dioxide and fuel-related gases adsorbed on the small pore scandium terephthalate metal organic framework, Sc2(O2CC6H4CO2)3. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[62]  C. Serre,et al.  How hydration drastically improves adsorption selectivity for CO(2) over CH(4) in the flexible chromium terephthalate MIL-53. , 2006, Angewandte Chemie.

[63]  Timothy E. Fout,et al.  Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆ , 2008 .

[64]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[65]  Seth M. Cohen,et al.  Modulating metal-organic frameworks to breathe: a postsynthetic covalent modification approach. , 2009, Journal of the American Chemical Society.

[66]  Jianwen Jiang,et al.  Molecular insight into adsorption and diffusion of alkane isomer mixtures in metal-organic frameworks. , 2009, The journal of physical chemistry. B.

[67]  Yinyong Sun,et al.  Microporous magnesium and manganese formates for acetylene storage and separation. , 2007, Chemistry, an Asian journal.

[68]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[69]  T. Emge,et al.  A flexible MMOF exhibiting high selectivity for CO(2) over N(2), CH(4) and other small gases. , 2010, Chemical communications.

[70]  C. Ania,et al.  H2, N2, CO, and CO2 sorption properties of a series of robust sodalite-type microporous coordination polymers. , 2006, Inorganic chemistry.

[71]  A. Fletcher,et al.  High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. , 2007, Journal of the American Chemical Society.

[72]  Sergey Paltsev,et al.  Probabilistic forecast for twenty-first-century climate based on uncertainties in emissions (without policy) and climate parameters. , 2009 .

[73]  Patrick Ryan,et al.  Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[74]  Alírio E. Rodrigues,et al.  Metal Organic Framework Adsorbent for Biogas Upgrading , 2008 .

[75]  R. Banerjee,et al.  Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link , 2011 .

[76]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[77]  Marco Gallo,et al.  Fuel Gas Storage and Separations by Metal−Organic Frameworks: Simulated Adsorption Isotherms for H2 and CH4 and Their Equimolar Mixture , 2009 .

[78]  J. Brennecke,et al.  Why Is CO2 so soluble in imidazolium-based ionic liquids? , 2004, Journal of the American Chemical Society.

[79]  R. Snurr,et al.  Enhanced Hydrogen Uptake and the Electronic Structure of Lithium-Doped Metal-Organic Frameworks , 2008 .

[80]  R. T. Yang,et al.  Gas Separation by Adsorption Processes , 1987 .

[81]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[82]  David S. Sholl,et al.  Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metal−Organic Framework Materials , 2009 .

[83]  S. Sandler,et al.  Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[84]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[85]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[86]  R. Banerjee,et al.  Structural, Magnetic, and Gas Adsorption Study of a Two-Dimensional Tetrazole-Pyrimidine Based Metal−Organic Framework , 2010 .

[87]  Rajamani Krishna,et al.  Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks , 2013 .

[88]  Jihyun An,et al.  High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. , 2010, Journal of the American Chemical Society.

[89]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[90]  J. Hupp,et al.  Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. , 2005, Inorganic chemistry.

[91]  C. Serre,et al.  Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature. , 2009, Journal of the American Chemical Society.

[92]  Alexander M. Spokoyny,et al.  Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer , 2009 .

[93]  G. Kalies,et al.  A novel copper-based MOF material: Synthesis, characterization and adsorption studies , 2011 .

[94]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[95]  Ann Thayer DIAGNOSTICS Roche launches hostile bid for Ventana Medical Systems , 2007 .

[96]  Hong‐Cai Zhou,et al.  High‐Throughput Analytical Model to Evaluate Materials for Temperature Swing Adsorption Processes , 2013, Advanced materials.

[97]  V. Goetz,et al.  Carbon dioxide-methane mixture adsorption on activated carbon , 2006 .

[98]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[99]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[100]  J. Marrot,et al.  MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and mu3-oxo-centered trinuclear units. , 2006, Journal of the American Chemical Society.

[101]  Keiji Nakagawa,et al.  Solid solutions of soft porous coordination polymers: fine-tuning of gas adsorption properties. , 2010, Angewandte Chemie.

[102]  R. Banerjee,et al.  Structural diversity in a series of metal–organic frameworks (MOFs) composed of divalent transition metals, 4,4′-bipyridine and a flexible carboxylic acid , 2010 .

[103]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[104]  M. Vandichel,et al.  Synthesis, characterization and sorption properties of NH2-MIL-47. , 2012, Physical chemistry chemical physics : PCCP.

[105]  F. Tezel,et al.  Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolite , 2007 .

[106]  C. Kubiak,et al.  Photoreduction of CO2 on p-type Silicon Using Re(bipy-But)(CO)3Cl: Photovoltages Exceeding 600 mV for the Selective Reduction of CO2 to CO , 2010 .

[107]  D. M. D'Alessandro,et al.  Abscheidung von Kohlendioxid: Perspektiven für neue Materialien , 2010 .

[108]  F. Bonino,et al.  Structural Transformations and adsorption of fuel-related gases of a structurally responsive nickel phosphonate metal-organic framework, Ni-STA-12. , 2008, Journal of the American Chemical Society.

[109]  Chongli Zhong,et al.  Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[110]  Michael O'Keeffe,et al.  Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. , 2009, Journal of the American Chemical Society.

[111]  D. Zhao,et al.  Synthesis, morphology control, and properties of porous metal–organic coordination polymers , 2003 .

[112]  R. Snurr,et al.  Assessment of Isoreticular Metal−Organic Frameworks for Adsorption Separations: A Molecular Simulation Study of Methane/n-Butane Mixtures , 2004 .

[113]  Kyriakos C. Stylianou,et al.  CO2 selectivity of a 1D microporous adenine-based metal-organic framework synthesised in water. , 2011, Chemical communications.

[114]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[115]  M. LeVan,et al.  CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[116]  Y. S. Lin,et al.  Adsorption and Diffusion of Carbon Dioxide on Metal−Organic Framework (MOF-5) , 2009 .

[117]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[118]  A. Goodman,et al.  Mechanism for the Dynamic Adsorption of CO2 and CH4 in a Flexible Linear Chain Coordination Polymer as Determined from In Situ Infrared Spectroscopy , 2010 .

[119]  Wen-guo Wang,et al.  Manganese(II) pyrimidine-4,6-dicarboxylates: synthetic, structural, magnetic, and adsorption insights. , 2008, Inorganic chemistry.

[120]  Qing Min Wang,et al.  Metallo-organic molecular sieve for gas separation and purification , 2002 .

[121]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[122]  J. B. Lambert,et al.  Metal−Organic Frameworks from Silicon- and Germanium-Centered Tetrahedral Ligands , 2008 .

[123]  Yves Schuurman,et al.  Heats of adsorption for seven gases in three metal-organic frameworks: systematic comparison of experiment and simulation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[124]  Young Eun Cheon,et al.  Multifunctional fourfold interpenetrating diamondoid network: gas separation and fabrication of palladium nanoparticles. , 2008, Chemistry.

[125]  Jeongyong Lee SYNTHESIS AND GAS SORPTION STUDY OF MICROPOROUS METAL ORGANIC FRAMEWORKS FOR HYDROGEN AND METHANE STORAGE , 2007 .

[126]  Zhenqiang Wang,et al.  Postsynthetic covalent modification of a neutral metal-organic framework. , 2007, Journal of the American Chemical Society.

[127]  J. Long,et al.  High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites , 2011 .

[128]  J. Hupp,et al.  Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations , 2011 .

[129]  H. Svendsen,et al.  Computational chemistry study of reactions, equilibrium and kinetics of chemical CO2 absorption , 2007 .

[130]  David W. Keith,et al.  Climate Strategy with Co2 Capture from the Air , 2001 .

[131]  Leonard R. MacGillivray,et al.  Metal-organic frameworks : design and application , 2010 .

[132]  Mohamed Eddaoudi,et al.  Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities. , 2006, Chemical communications.

[133]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[134]  R. T. Yang,et al.  Kinetic separation of methane—carbon dioxide mixture by adsorption on molecular sieve carbon , 1989 .

[135]  H. Müller,et al.  In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2- and CO2-storage ability. , 2010, Angewandte Chemie.

[136]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[137]  G. Shimizu,et al.  Phosphonate and sulfonate metal organic frameworks. , 2009, Chemical Society reviews.

[138]  Yan-juan Zhang,et al.  Interconversion between a nonporous nanocluster and a microporous coordination polymer showing selective gas adsorption. , 2010, Journal of the American Chemical Society.

[139]  Chongli Zhong,et al.  Molecular Simulation of CO2/H2 Mixture Separation in Metal-organic Frameworks: Effect of Catenation and Electrostatic Interactions , 2009 .

[140]  C. Ania,et al.  Borderline microporous–ultramicroporous palladium(II) coordination polymer networks. Effect of pore functionalisation on gas adsorption properties , 2007 .

[141]  Jianguo Mi,et al.  Li-modified metal–organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity , 2010 .

[142]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[143]  M. Trachtenberg,et al.  Highly selective CO2 capture by a flexible microporous metal-organic framework (MMOF) material. , 2010, Chemistry.

[144]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[145]  M. Kurmoo Magnetic metal-organic frameworks. , 2009, Chemical Society reviews.

[146]  Randall Q. Snurr,et al.  Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification , 2009 .

[147]  H. Bajaj,et al.  Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53(Al)] , 2011 .

[148]  M. Douglas LeVan,et al.  A Novel Adsorption Cycle for CO2 Recovery: Experimental and Theoretical Investigations of a Temperature Swing Compression Process , 2006 .

[149]  Young Eun Cheon,et al.  Post-synthetic reversible incorporation of organic linkers into porous metal-organic frameworks through single-crystal-to-single-crystal transformations and modification of gas-sorption properties. , 2010, Chemistry.

[150]  Omar K. Yaghi,et al.  A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. , 2010, Journal of the American Chemical Society.

[151]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[152]  Jun Liu,et al.  Progress in adsorption-based CO2 capture by metal-organic frameworks. , 2012, Chemical Society reviews.

[153]  C. Serre,et al.  Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. , 2011, Chemical communications.

[154]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[155]  Bjørnar Arstad,et al.  Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide , 2008 .

[156]  Wei Zhou,et al.  Adsorption Sites and Binding Nature of CO2 in Prototypical Metal−Organic Frameworks: A Combined Neutron Diffraction and First-Principles Study , 2010 .

[157]  S. Deng,et al.  Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. , 2011, Journal of colloid and interface science.

[158]  Ulrich Müller,et al.  Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.

[159]  K. S. Knaebel,et al.  Pressure swing adsorption , 1993 .

[160]  D. Zhao,et al.  Reversible Two-Dimensional−Three Dimensional Framework Transformation within a Prototype Metal−Organic Framework , 2009 .

[161]  M. Kanatzidis,et al.  An interpenetrated framework material with hysteretic CO(2) uptake. , 2010, Chemistry.

[162]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[163]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[164]  Peng Wang,et al.  Porous cobalt(II)-imidazolate supramolecular isomeric frameworks with selective gas sorption property. , 2011, Chemical communications.

[165]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[166]  G. Qian,et al.  A rod packing microporous metal-organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. , 2010, Chemical communications.

[167]  Young Eun Cheon,et al.  Selective gas adsorption in a microporous metal-organic framework constructed of CoII4 clusters. , 2009, Chemical communications.

[168]  T. Nakagawa,et al.  Metal-ion-dependent gas sorptivity of elastic layer-structured MOFs. , 2009, Chemistry.

[169]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[170]  Alírio E. Rodrigues,et al.  Removal of Carbon Dioxide from Natural Gas by Vacuum Pressure Swing Adsorption , 2006 .

[171]  P. Harlick,et al.  An experimental adsorbent screening study for CO2 removal from N2 , 2004 .

[172]  R. Banerjee,et al.  Selective CO2 and H2 adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites , 2010 .

[173]  Mark D. Allendorf,et al.  Adsorption and Separation of Noble Gases by IRMOF-1 : Grand Canonical Monte Carlo Simulations , 2009 .

[174]  Jianwen Jiang,et al.  Molecular screening of metal-organic frameworks for CO2 storage. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[175]  Jun Kim,et al.  Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption , 2011 .

[176]  Lang Liu,et al.  Dynamic interplay between spin-crossover and host-guest function in a nanoporous metal-organic framework material. , 2009, Journal of the American Chemical Society.

[177]  J. Navarro,et al.  Polymorphic coordination networks responsive to CO2, moisture, and thermal stimuli: porous cobalt(II) and zinc(II) fluoropyrimidinolates. , 2008, Chemistry.

[178]  Young Eun Cheon,et al.  Selective gas adsorption in a magnesium-based metal-organic framework. , 2009, Chemical communications.

[179]  Emmanuel Tylianakis,et al.  Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. , 2008, Nano letters.

[180]  D. Theodorou,et al.  Sorption thermodynamics of CO2, CH4, and their mixtures in the ITQ-1 zeolite as revealed by molecular simulations. , 2006, The journal of physical chemistry. B.

[181]  R. Snurr,et al.  Screening CO2/N2 selectivity in metal‐organic frameworks using Monte Carlo simulations and ideal adsorbed solution theory , 2012 .

[182]  M. Hartmann,et al.  Lithiumdotierung eines hydroxymodifizierten MIL‐53‐Strukturanalogons zur Verbesserung der Wasserstoffadsorption , 2009 .

[183]  Perla B. Balbuena,et al.  Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks , 2011 .

[184]  Tejraj M. Aminabhavi,et al.  Separation of Carbon Dioxide from Natural Gas Mixtures through Polymeric Membranes—A Review , 2007 .

[185]  Alírio E. Rodrigues,et al.  Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures , 2004 .

[186]  S. Gumma,et al.  Gas Adsorption Properties of the Chromium-Based Metal Organic Framework MIL-101 , 2009 .

[187]  B. Smit,et al.  The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. , 2013, Journal of the American Chemical Society.

[188]  Chongli Zhong,et al.  A computational study of the effect of doping metals on CO2/CH4 separation in metal–organic frameworks , 2011 .

[189]  Hong-Cai Zhou,et al.  Gas storage in porous metal-organic frameworks for clean energy applications. , 2010, Chemical communications.

[190]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[191]  Wei‐Yin Sun,et al.  Temperature dependent selective gas sorption of the microporous metal-imidazolate framework [Cu(L)] [H2L = 1,4-di(1H-imidazol-4-yl)benzene]. , 2011, Chemical communications.

[192]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[193]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[194]  M. P. Suh,et al.  Selective CO2 adsorption in a flexible non-interpenetrated metal-organic framework. , 2011, Chemical communications.

[195]  Taro Takahashi The Fate of Industrial Carbon Dioxide , 2004, Science.

[196]  Randall Q. Snurr,et al.  Enhanced CO2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules , 2009 .

[197]  Liang Yu,et al.  Kinetic separation of carbon dioxide and methane on a copper metal-organic framework. , 2011, Journal of colloid and interface science.

[198]  M. P. Suh,et al.  High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups. , 2010, Chemistry.

[199]  Alexander M. Spokoyny,et al.  Synthesis and hydrogen sorption properties of carborane based metal-organic framework materials. , 2007, Journal of the American Chemical Society.

[200]  A. Torrisi,et al.  Impact of ligands on CO(2) adsorption in metal-organic frameworks: First principles study of the interaction of CO(2) with functionalized benzenes. II. Effect of polar and acidic substituents. , 2010, The Journal of chemical physics.

[201]  D. Caputo,et al.  Modeling Carbon Dioxide Adsorption on Microporous Substrates: Comparison between Cu-BTC Metal-Organic Framework and 13X Zeolitic Molecular Sieve , 2010 .

[202]  Seda Keskin,et al.  Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? , 2010, ChemSusChem.

[203]  Richard Blom,et al.  Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide , 2009 .

[204]  C. Pinel,et al.  Generic postfunctionalization route from amino-derived metal-organic frameworks. , 2010, Journal of the American Chemical Society.

[205]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[206]  O. M. Yaghi,et al.  Retikuläre Chemie metall‐organischer Polyeder , 2008 .

[207]  G. Shimizu,et al.  An amine-functionalized metal organic framework for preferential CO(2) adsorption at low pressures. , 2009, Chemical communications.

[208]  S. Nguyen,et al.  Prospects for nanoporous metal-organic materials in advanced separations processes , 2004 .

[209]  Alexander M. Spokoyny,et al.  Separation of gas mixtures using Co(II) carborane-based porous coordination polymers. , 2010, Chemical communications.

[210]  Omar M Yaghi,et al.  Metal insertion in a microporous metal-organic framework lined with 2,2'-bipyridine. , 2010, Journal of the American Chemical Society.

[211]  A. Torrisi,et al.  Impact of ligands on CO2 adsorption in metal-organic frameworks: first principles study of the interaction of CO2 with functionalized benzenes. I. Inductive effects on the aromatic ring. , 2009, The Journal of chemical physics.

[212]  Youqing Shen,et al.  Flue-Gas Carbon Capture on Carbonaceous Sorbents: Toward a Low-Cost Multifunctional Carbon Filter for "Green" Energy Producers † , 2008 .

[213]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[214]  D. Zhao,et al.  A Microporous Metal-Organic Framework with Immobilized -OH Functional Groups within the Pore Surfaces for Selective Gas Sorption , 2010 .

[215]  Omar K Farha,et al.  Rational design, synthesis, purification, and activation of metal-organic framework materials. , 2010, Accounts of chemical research.

[216]  Krista S. Walton,et al.  Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods , 2009 .

[217]  A. J. Blake,et al.  High capacity gas storage by a 4,8-connected metal-organic polyhedral framework. , 2011, Chemical communications.