Splines for Diffeomorphic Image Regression

This paper develops a method for splines on diffeomorphisms for image regression. In contrast to previously proposed methods to capture image changes over time, such as geodesic regression, the method can capture more complex spatio-temporal deformations. In particular, it is a first step towards capturing periodic motions for example of the heart or the lung. Starting from a variational formulation of splines the proposed approach allows for the use of temporal control points to control spline behavior. This necessitates the development of a shooting formulation for splines. Experimental results are shown for synthetic and real data. The performance of the method is compared to geodesic regression.

[1]  Darryl D. Holm,et al.  The Momentum Map Representation of Images , 2009, J. Nonlinear Sci..

[2]  Michael I. Miller,et al.  Evolutions equations in computational anatomy , 2009, NeuroImage.

[3]  P. Thomas Fletcher,et al.  A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[4]  P. Thomas Fletcher,et al.  Intrinsic Polynomials for Regression on Riemannian Manifolds , 2014, Journal of Mathematical Imaging and Vision.

[5]  François-Xavier Vialard,et al.  Invariant Higher-Order Variational Problems II , 2011, J. Nonlinear Sci..

[6]  Mark Jenkinson,et al.  Non-local Shape Descriptor: A New Similarity Metric for Deformable Multi-modal Registration , 2011, MICCAI.

[7]  P. Thomas Fletcher,et al.  A Hierarchical Geodesic Model for Diffeomorphic Longitudinal Shape Analysis , 2013, IPMI.

[8]  L. Younes Shapes and Diffeomorphisms , 2010 .

[9]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[10]  P. Crouch,et al.  Splines of class Ck on non-euclidean spaces , 1995 .

[11]  Franccois-Xavier Vialard,et al.  Shape Splines and Stochastic Shape Evolutions: A Second Order Point of View , 2010, 1003.3895.

[12]  François-Xavier Vialard,et al.  Geodesic Regression for Image Time-Series , 2011, MICCAI.

[13]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .