Power-Set Functors and Saturated Trees
暂无分享,去创建一个
Jirí Adámek | Stefan Milius | Lawrence S. Moss | Lurdes Sousa | L. Moss | J. Adámek | L. Sousa | Stefan Milius
[1] James Worrell,et al. On the final sequence of a finitary set functor , 2005, Theor. Comput. Sci..
[2] Jiří Adámek,et al. Free algebras and automata realizations in the language of categories , 1974 .
[3] Kit Fine,et al. Normal forms in modal logic , 1975, Notre Dame J. Formal Log..
[4] K. Fine. Some Connections Between Elementary and Modal Logic , 1975 .
[5] Daniel Schwencke. Coequational logic for accessible functors , 2010, Inf. Comput..
[6] Jan J. M. M. Rutten,et al. Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..
[7] Samson Abramsky,et al. A Cook's Tour of the Finitary Non-Well-Founded Sets , 2011, We Will Show Them!.
[8] Michael Barr,et al. Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..
[9] Peter Aczel,et al. A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.
[10] Peter Aczel,et al. Non-well-founded sets , 1988, CSLI lecture notes series.
[11] Stefan Milius,et al. On coalgebra based on classes , 2004, Theor. Comput. Sci..
[12] Alexander Kurz,et al. Coalgebraic modal logic of finite rank , 2005, Math. Struct. Comput. Sci..
[13] Lawrence S. Moss,et al. FINITE MODELS CONSTRUCTED FROM CANONICAL FORMULAS , 2007, J. Philos. Log..
[14] H. Peter Gumm,et al. Monoid-labeled transition systems , 2001, CMCS.
[15] J. Adámek,et al. Automata and Algebras in Categories , 1990 .
[16] Věra Trnková,et al. On descriptive classification of set-functors. II. , 1971 .
[17] J. Lambek. A fixpoint theorem for complete categories , 1968 .
[18] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[19] A. R. D. Mathias,et al. NON‐WELL‐FOUNDED SETS (CSLI Lecture Notes 14) , 1991 .