Colossal refrigerant capacity in [Fe(hyptrz)3]A2·H2O around the freezing temperature of water

[1]  P. J. von Ranke,et al.  First indirect experimental evidence and theoretical discussion of giant refrigeration capacity through the reversible pressure induced spin-crossover phase transition , 2018, Journal of Alloys and Compounds.

[2]  Victorino Franco,et al.  Magnetocaloric effect: From materials research to refrigeration devices , 2018 .

[3]  Satyendra Singh,et al.  Giant electrocaloric and energy storage performance of [(K0.5Na0.5)NbO3](1−x)-[LiSbO3]x nanocrystalline ceramics , 2018, Scientific Reports.

[4]  Y. Kimura,et al.  Cryogenic superelasticity with large elastocaloric effect , 2018 .

[5]  R. Artiaga,et al.  Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures , 2017, Nature Communications.

[6]  P. Ranke A microscopic refrigeration process triggered through spin-crossover mechanism , 2017 .

[7]  L. Mañosa,et al.  Materials with Giant Mechanocaloric Effects: Cooling by Strength , 2017, Advanced materials.

[8]  S. Gama,et al.  Electric field triggering the spin reorientation and controlling the absorption and release of heat in the induced multiferroic compound EuTiO3 , 2015 .

[9]  T. Zhao,et al.  Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature , 2015, Scientific Reports.

[10]  Á. Alegría,et al.  Role of Temperature and Pressure on the Multisensitive Multiferroic Dicyanamide Framework [TPrA][Mn(dca)3] with Perovskite-like Structure. , 2015, Inorganic chemistry.

[11]  W. Li,et al.  Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate , 2015, Nature Communications.

[12]  Koshi Takenaka,et al.  Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. , 2015, Nature materials.

[13]  J. Linares,et al.  Diffusionless phase transition with two order parameters in spin-crossover solids , 2014 .

[14]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[15]  M. Vopson The multicaloric effect in multiferroic materials , 2012 .

[16]  K. Gschneidner,et al.  Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2 , 2012 .

[17]  P. Ranke,et al.  Theoretical aspects of the magnetocaloric effect , 2010 .

[18]  L. Mañosa,et al.  Elastocaloric effect associated with the martensitic transition in shape-memory alloys. , 2008, Physical review letters.

[19]  S. Gama,et al.  Understanding the influence of the first-order magnetic phase transition on the magnetocaloric effect: application to Gd5(SixGe1−x)4 , 2004 .

[20]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[21]  M. Marchivie,et al.  Co(II) molecular complexes as a reference for the spin crossover in Fe(II) analogues , 2002 .

[22]  J. McGarvey,et al.  Raman spectroscopy of the high- and low-spin states of the spin crossover complex Fe(phen) 2 (NCS) 2 : an initial approach to estimation of vibrational contributions to the associated entropy change , 2000 .

[23]  P. Gütlich,et al.  Pressure effect on a novel spin transition polymeric chain compound , 2000 .

[24]  Shailendra K. Kulshreshtha,et al.  The nature of spin-state transitions in solid complexes of iron(II) and the interpretation of some associated phenomena , 1985 .

[25]  S. Seki,et al.  Phonon coupled cooperative low-spin 1A1high-spin 5T2 transition in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] crystals , 1974 .