Collocation Methods for the Investigation of Periodic Motions of Constrained Multibody Systems

The investigation of periodic motions of constrained multibodysystems requires the numerical solution of differential-algebraicboundary value problems. After briefly surveying the basics of periodicmotion analysis the paper presents an extension of projected collocationmethods [6] to a special class of boundary value problems for multibodysystem equations with position and velocity constraints. These methodscan be applied for computing stable as well as unstable periodicmotions. Furthermore they provide stability information, which can beused to detect bifurcations on periodic branches. The special class ofequations stemming from contact problems like in railroad systems [22]can be handled as well. Numerical experiments with a wheelset modeldemonstrate the performance of the algorithms.

[1]  Uri M. Ascher,et al.  Stability of Computational Methods for Constrained Dynamics Systems , 1991, SIAM J. Sci. Comput..

[2]  U. Ascher,et al.  Projected implicit Runge-Kutta methods for differential-algebraic equations , 1990 .

[3]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[4]  J. Yen,et al.  Implicit Numerical Integration of Constrained Equations of Motion Via Generalized Coordinate Partitioning , 1992 .

[5]  René Lamour,et al.  How Floquet-theory applies to differential-algebraic equations , 1996 .

[6]  Uri M. Ascher,et al.  Projected collocation for higher-order higher-index differential-algebraic equations , 1992 .

[7]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[8]  Carsten Knudsen,et al.  Non-linear dynamic phenomena in the behaviour of a railway wheelset model , 1991 .

[9]  Hans True,et al.  CHAOS AND ASYMMETRY IN RAILWAY VEHICLE DYNAMICS , 1994 .

[10]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[11]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[12]  R. Seydel Practical bifurcation and stability analysis : from equilibrium to chaos , 1994 .

[13]  Ch. Kaas-Petersen Chaos in a railway bogie , 1986 .

[14]  Martin Arnold,et al.  Zur Theorie und zur numerischen Lösung von Anfangswertproblemen für differentiell-algebraische Systeme von höherem Index , 1998 .

[15]  P. Rentrop,et al.  The Drazin inverse in multibody system dynamics , 1993 .

[16]  Uri M. Ascher,et al.  Collocation Software for Boundary Value Differential-Algebraic Equations , 1994, SIAM J. Sci. Comput..

[17]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[18]  F. Gantmacher,et al.  Applications of the theory of matrices , 1960 .

[19]  Miklós Farkas,et al.  Periodic Motions , 1994 .

[20]  R. Seydel,et al.  A Continuation Algorithm with Step Control , 1984 .

[21]  Robert D. Russell,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[22]  R. Seydel Practical Bifurcation and Stability Analysis , 1994 .