Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse.

Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions.

[1]  F. Gozzo,et al.  Hemoglobin-derived Peptides as Novel Type of Bioactive Signaling Molecules , 2010, The AAPS Journal.

[2]  B. Dean,et al.  Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use , 2001, Neuroscience.

[3]  I. Neumann Brain Oxytocin: A Key Regulator of Emotional and Social Behaviours in Both Females and Males , 2008, Journal of neuroendocrinology.

[4]  K. Tai,et al.  Characterization of [3H]U69593 binding sites in the rat heart by receptor binding assays. , 1991, Journal of molecular and cellular cardiology.

[5]  L. Devi,et al.  G-protein-coupled receptor dimerization: modulation of receptor function. , 2001, Pharmacology & therapeutics.

[6]  H. Okano,et al.  Bidirectional regulation of dopamine D2 and neurotensin NTS1 receptors in dopamine neurons , 2006, The European journal of neuroscience.

[7]  D. Sulzer,et al.  How Addictive Drugs Disrupt Presynaptic Dopamine Neurotransmission , 2011, Neuron.

[8]  Masahiko Watanabe,et al.  Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher‐order oligomers in living cells , 2009, Journal of neurochemistry.

[9]  Xiaochun Sun,et al.  Opioid Receptor Homo- and Heterodimerization in Living Cells by Quantitative Bioluminescence Resonance Energy Transfer , 2005, Molecular Pharmacology.

[10]  S. Nuber,et al.  Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling , 2012, Pharmacological Reviews.

[11]  L. Devi,et al.  Opioid receptor heteromers in analgesia , 2012, Expert Reviews in Molecular Medicine.

[12]  H. Fields,et al.  Synergy between the antinociceptive effects of intrathecal clonidine and systemic morphine in the rat , 1987, Pain.

[13]  David J. Daniels,et al.  A Bivalent Ligand (KDN-21) Reveals Spinal δ and κ Opioid Receptors Are Organized as Heterodimers That Give Rise to δ1 and κ2 Phenotypes. Selective Targeting of δ−κ Heterodimers , 2004 .

[14]  J. Ballantyne,et al.  Itching after epidural and spinal opiates , 1988, Pain.

[15]  C. Iitaka,et al.  Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. , 2009, Current opinion in pharmacology.

[16]  L. Trudeau,et al.  Neurotensin Triggers Dopamine D2 Receptor Desensitization through a Protein Kinase C and β-Arrestin1-dependent Mechanism* , 2011, The Journal of Biological Chemistry.

[17]  R. Gainetdinov,et al.  Enhanced morphine analgesia in mice lacking beta-arrestin 2. , 1999, Science.

[18]  H. Loh,et al.  Heterodimerization of μ- and δ-Opioid Receptors Occurs at the Cell Surface Only and Requires Receptor-G Protein Interactions* , 2005, Journal of Biological Chemistry.

[19]  B. O'dowd,et al.  Trafficking of preassembled opioid μ-δ heterooligomer-Gz signaling complexes to the plasma membrane: Coregulation by agonists , 2007 .

[20]  L. Stone,et al.  Moxonidine, a selective imidazoline/α 2 adrenergic receptor agonist, synergizes with morphine and deltorphin II to inhibit substance P-induced behavior in mice , 2000, Pain.

[21]  J. Holaday,et al.  beta-FNA binds irreversibly to the opiate receptor complex: in vivo and in vitro evidence. , 1988, The Journal of pharmacology and experimental therapeutics.

[22]  K. Mackie,et al.  Concurrent Stimulation of Cannabinoid CB1 and Dopamine D2 Receptors Enhances Heterodimer Formation: A Mechanism for Receptor Cross-Talk? , 2005, Molecular Pharmacology.

[23]  L. Devi,et al.  Receptor heteromerization and drug discovery. , 2010, Trends in pharmacological sciences.

[24]  S. Petrosino,et al.  Endocannabinoids and the regulation of their levels in health and disease , 2007, Current opinion in lipidology.

[25]  L. Devi,et al.  Cannabinoid-opioid interactions during neuropathic pain and analgesia. , 2010, Current opinion in pharmacology.

[26]  Francesca Fanelli,et al.  Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization , 2003, Journal of Biological Chemistry.

[27]  J. Javitch,et al.  Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. , 2010, Nature chemical biology.

[28]  P. Fletcher,et al.  The Dopamine D1-D2 Receptor Heteromer Localizes in Dynorphin/Enkephalin Neurons , 2010, The Journal of Biological Chemistry.

[29]  Richard N. Day,et al.  Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[30]  W. Cao,et al.  Role of dopamine D3 receptors in basal nociception regulation and in morphine-induced tolerance and withdrawal , 2012, Brain Research.

[31]  B. O'dowd,et al.  Dopamine Receptor Homooligomers and Heterooligomers in Schizophrenia , 2011, CNS neuroscience & therapeutics.

[32]  E. Lakatta,et al.  'Cross talk' between opioid peptide and adrenergic receptor signaling in isolated rat heart. , 1997, Circulation.

[33]  Z. Wasylewski,et al.  The role of D1–D2 receptor hetero-dimerization in the mechanism of action of clozapine , 2008, European Neuropsychopharmacology.

[34]  H. Satake,et al.  Recent advances and perceptions in studies of heterodimerization between G protein-coupled receptors. , 2008, Protein and peptide letters.

[35]  Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster). , 2000 .

[36]  J. Manzanares,et al.  κ‐ and δ‐opioid receptor functional activities are increased in the caudate putamen of cannabinoid CB1 receptor knockout mice , 2005, The European journal of neuroscience.

[37]  R. Zukin,et al.  Characterization and visualization of rat and guinea pig brain kappa opioid receptors: evidence for kappa 1 and kappa 2 opioid receptors. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Kolson,et al.  Morphine upregulates functional expression of neurokinin‐1 receptor in neurons , 2006, Journal of neuroscience research.

[39]  L. Devi,et al.  Receptor heterodimerization leads to a switch in signaling: β‐arrestin2‐mediated ERK activation by μ‐δ opioid receptor heterodimers , 2007 .

[40]  Xiao Hong Yu,et al.  Sensory neuron-specific receptor activation elicits central and peripheral nociceptive effects in rats. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  W. Bowen,et al.  Modulation of mu-mediated antinociception in the mouse involves opioid delta-2 receptors. , 1992, The Journal of pharmacology and experimental therapeutics.

[42]  K. Fuxe,et al.  The Selective mGlu5 Receptor Agonist CHPG Inhibits Quinpirole-Induced Turning in 6-Hydroxydopamine-Lesioned Rats and Modulates the Binding Characteristics of Dopamine D2 Receptors in the Rat Striatum Interactions with Adenosine A2a Receptors , 2001, Neuropsychopharmacology.

[43]  G. Balboni,et al.  Agonists at the δ‐opioid receptor modify the binding of µ‐receptor agonists to the µ–δ receptor hetero‐oligomer , 2010, British journal of pharmacology.

[44]  T. Freund,et al.  Brain monoglyceride lipase participating in endocannabinoid inactivation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. M. Adler,et al.  Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. , 1992, Brain research. Molecular brain research.

[46]  S. Tonegawa,et al.  Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice , 1994, Cell.

[47]  J. Javitch,et al.  Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D2-adenosine A2A receptor complexes in the striatum. , 2011, BioTechniques.

[48]  Lakshmi A Devi,et al.  AT1R–CB1R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II , 2011, The EMBO journal.

[49]  Lakshmi A. Devi,et al.  G-protein-coupled receptor heterodimerization modulates receptor function , 1999, Nature.

[50]  S. Ferré,et al.  Stimulation of adenosine A1 receptors prevents the EEG arousal due to dopamine D1 receptor activation in rabbits. , 1996, European journal of pharmacology.

[51]  U. Kumar,et al.  Subtypes of the Somatostatin Receptor Assemble as Functional Homo- and Heterodimers* , 2000, The Journal of Biological Chemistry.

[52]  J. Waddington,et al.  Phenotypic studies on dopamine receptor subtype and associated signal transduction mutants: insights and challenges from 10 years at the psychopharmacology–molecular biology interface , 2005, Psychopharmacology.

[53]  Graeme Milligan,et al.  Homo- and hetero-oligomeric interactions between G-protein-coupled receptors in living cells monitored by two variants of bioluminescence resonance energy transfer (BRET): hetero-oligomers between receptor subtypes form more efficiently than between less closely related sequences. , 2002, The Biochemical journal.

[54]  Pierre Casellas,et al.  Hypersensitization of the Orexin 1 Receptor by the CB1 Receptor , 2003, Journal of Biological Chemistry.

[55]  K. Heinonen,et al.  SURVIVAL OF THE SMALLEST Time Trends and Determinants of Mortality in a Very Preterm Population During the 1980s , 1988, The Lancet.

[56]  K. Kita,et al.  Effects of D1 and D2 dopamine receptor antagonists on cocaine-induced self-stimulation and locomotor activity in rats , 1999, European Neuropsychopharmacology.

[57]  A. Engel,et al.  The G protein‐coupled receptor rhodopsin in the native membrane , 2004, FEBS letters.

[58]  J. Daunais,et al.  Acute and chronic cocaine administration differentially alters striatal opioid and nuclear transcription factor mRNAs , 1994, Synapse.

[59]  C. Larsson,et al.  Acute effects of D1- and D2-receptor agonist and antagonist drugs on somatostatin binding, inhibition of adenylyl cyclase activity and accumulation of inositol 1,4,5-trisphosphate in the rat striatum. , 1997, Brain research. Molecular brain research.

[60]  V. Pickel,et al.  Dual ultrastructural localization of μ‐opiate receptors and substance p in the dorsal horn , 2000, Synapse.

[61]  B. O'dowd,et al.  Dopamine D1 and D2 Receptor Co-activation Generates a Novel Phospholipase C-mediated Calcium Signal* , 2004, Journal of Biological Chemistry.

[62]  S. Sealfon,et al.  Functional crosstalk and heteromerization of serotonin 5-HT2A and dopamine D2 receptors , 2011, Neuropharmacology.

[63]  C. Schmauss,et al.  Decreased c-fos Responses to Dopamine D1Receptor Agonist Stimulation in Mice Deficient for D3Receptors* , 1999, The Journal of Biological Chemistry.

[64]  R. Jockers,et al.  History and Biological Significance of GPCR Heteromerization in the Neuroendocrine System , 2011, Neuroendocrinology.

[65]  Michel Bouvier,et al.  Simultaneous Activation of the δ Opioid Receptor (δOR)/Sensory Neuron-Specific Receptor-4 (SNSR-4) Hetero-Oligomer by the Mixed Bivalent Agonist Bovine Adrenal Medulla Peptide 22 Activates SNSR-4 but Inhibits δOR Signaling , 2006, Molecular Pharmacology.

[66]  D. Cichewicz Synergistic interactions between cannabinoid and opioid analgesics. , 2004, Life sciences.

[67]  M. Parmentier,et al.  Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. , 1999, Science.

[68]  F. Ciruela,et al.  Functional relevance of neurotransmitter receptor heteromers in the central nervous system , 2007, Trends in Neurosciences.

[69]  Hiroshi Kase,et al.  Rescue of Locomotor Impairment in Dopamine D2 Receptor-Deficient Mice by an Adenosine A2A Receptor Antagonist , 2000, The Journal of Neuroscience.

[70]  K. Lorenz,et al.  Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling. , 2008, Nature chemical biology.

[71]  E. Costa The role of serotonin in neurobiology. , 1960, International review of neurobiology.

[72]  E. Rodríguez-Martín,et al.  Dopamine enhances somatostatin receptor‐mediated inhibition of adenylate cyclase in rat striatum and hippocampus , 1997, Journal of neuroscience research.

[73]  W. Young,et al.  Oxytocin: The great facilitator of life , 2009, Progress in Neurobiology.

[74]  M. Trincavelli,et al.  A new D₂ dopamine receptor agonist allosterically modulates A(2A) adenosine receptor signalling by interacting with the A(2A)/D₂ receptor heteromer. , 2012, Cellular signalling.

[75]  Samira G. Ferreira,et al.  Pre‐synaptic adenosine A2A receptors control cannabinoid CB1 receptor‐mediated inhibition of striatal glutamatergic neurotransmission , 2011, Journal of neurochemistry.

[76]  B. Cravatt,et al.  Endocannabinoid Biosynthesis Proceeding through Glycerophospho-N-acyl Ethanolamine and a Role for α/β-Hydrolase 4 in This Pathway* , 2006, Journal of Biological Chemistry.

[77]  Lloyd D. Fricker,et al.  Hemopressin and Other Bioactive Peptides from Cytosolic Proteins: Are These Non-Classical Neuropeptides? , 2010, The AAPS Journal.

[78]  C. Heyser,et al.  mu-Opioid receptor knockout mice do not self-administer alcohol. , 2000, The Journal of pharmacology and experimental therapeutics.

[79]  K. Fuxe,et al.  Dopamine denervation leads to an increase in the intramembrane interaction between adenosine A2 and dopamine D2 receptors in the neostriatum , 1992, Brain Research.

[80]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[81]  S. Snyder,et al.  Opiate Receptors , 1988, Encyclopedia of Behavioral Medicine.

[82]  K. Fuxe,et al.  Adenosine–Dopamine Interactions in the Pathophysiology and Treatment of CNS Disorders , 2010, CNS neuroscience & therapeutics.

[83]  P. Gmeiner,et al.  Cross-receptor interactions between dopamine D2L and neurotensin NTS1 receptors modulate binding affinities of dopaminergics. , 2011, ACS chemical neuroscience.

[84]  B. Aragona,et al.  A Critical Role for Nucleus Accumbens Dopamine in Partner-Preference Formation in Male Prairie Voles , 2003, The Journal of Neuroscience.

[85]  D. Accili,et al.  Dopamine Receptors and Dopamine Transporter in Brain Function and Addictive Behaviors: Insights from Targeted Mouse Mutants , 1998, Developmental Neuroscience.

[86]  Y. Smith,et al.  Group I Metabotropic Glutamate Receptors in the Monkey Striatum: Subsynaptic Association with Glutamatergic and Dopaminergic Afferents , 2003, The Journal of Neuroscience.

[87]  S. Vincent,et al.  The effects of cysteamine on dopamine-mediated behaviors: Evidence for dopamine-somatostatin interactions in the striatum , 1986, Pharmacology Biochemistry and Behavior.

[88]  Sanjiv S. Gambhir,et al.  Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects , 2011, Proceedings of the National Academy of Sciences.

[89]  L. Pardo,et al.  Crystal structure of the μ-opioid receptor bound to a morphinan antagonist , 2012, Nature.

[90]  H. Loh,et al.  DPDPE-UK14,304 synergy is retained in mu opioid receptor knockout mice , 2003, Pain.

[91]  Jamie Fong,et al.  A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Michael J. Bailey,et al.  Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4) , 2010, Molecular and Cellular Endocrinology.

[93]  O. Valverde,et al.  CB1 receptor-deficient mice as a model for depression , 2012, Neuroscience.

[94]  R. L. Pagano,et al.  Hemopressin is an inverse agonist of CB1 cannabinoid receptors , 2007, Proceedings of the National Academy of Sciences.

[95]  Bryan L. Roth,et al.  Structure of the human kappa opioid receptor in complex with JDTic , 2012, Nature.

[96]  R. Schwabe,et al.  Endocannabinoids and liver disease. II. Endocannabinoids in the pathogenesis and treatment of liver fibrosis. , 2008, American journal of physiology. Gastrointestinal and liver physiology.

[97]  O. Valverde,et al.  Analysis of the endocannabinoid system by using CB1 cannabinoid receptor knockout mice. , 2005, Handbook of experimental pharmacology.

[98]  A. Baragli,et al.  Heterooligomerization of human dopamine receptor 2 and somatostatin receptor 2 Co-immunoprecipitation and fluorescence resonance energy transfer analysis. , 2007, Cellular signalling.

[99]  A. Mallat,et al.  Endocannabinoids and liver disease. I. Endocannabinoids and their receptors in the liver. , 2008, American journal of physiology. Gastrointestinal and liver physiology.

[100]  Chongguang Chen,et al.  Heterodimerization and cross-desensitization between the mu-opioid receptor and the chemokine CCR5 receptor. , 2004, European journal of pharmacology.

[101]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[102]  K. Fuxe,et al.  Oxytocin increases the density of high affinity α2-adrenoceptors within the hypothalamus, the amygdala and the nucleus of the solitary tract in ovariectomized rats , 2005, Brain Research.

[103]  Bill X. Huang,et al.  A biosynthetic pathway for anandamide , 2006, Proceedings of the National Academy of Sciences.

[104]  Y. Sarne,et al.  Independence of, and interactions between, cannabinoid and opioid signal transduction pathways in N18TG2 cells , 1998, Brain Research.

[105]  L. Prézeau,et al.  The oligomeric state sets GABAB receptor signalling efficacy , 2011, The EMBO journal.

[106]  S. Schulz,et al.  Heterodimerization of Substance P and μ-Opioid Receptors Regulates Receptor Trafficking and Resensitization* , 2003, Journal of Biological Chemistry.

[107]  C. Lluis,et al.  Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers. , 2009, Journal of medicinal chemistry.

[108]  B. Kieffer,et al.  Opioid receptors: From binding sites to visible molecules in vivo , 2009, Neuropharmacology.

[109]  M. Parmentier,et al.  Adenosine A2A receptors are involved in physical dependence and place conditioning induced by THC , 2004, The European journal of neuroscience.

[110]  Jing Chen,et al.  Heterodimerization of human apelin and kappa opioid receptors: roles in signal transduction. , 2012, Cellular signalling.

[111]  L. Parsons,et al.  Dopamine activation of endogenous cannabinoid signaling in dorsal striatum , 1999, Nature Neuroscience.

[112]  Yan-Gang Sun,et al.  A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord , 2007, Nature.

[113]  M. Chaney Side effects of intrathecal and epidural opioids , 1995, Canadian journal of anaesthesia = Journal canadien d'anesthesie.

[114]  K. Fuxe,et al.  Postsynaptic antagonistic interaction between adenosine A1, and dopamine D1 receptors , 1994, Neuroreport.

[115]  H. Nakata,et al.  Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. , 2003, Biochemical and biophysical research communications.

[116]  K. Fuxe,et al.  Evidence for the existence of dopamine d2-oxytocin receptor heteromers in the ventral and dorsal striatum with facilitatory receptor–receptor interactions , 2013, Molecular Psychiatry.

[117]  J. Selent,et al.  Oligomerization of G protein-coupled receptors: biochemical and biophysical methods. , 2011, Current medicinal chemistry.

[118]  J. Sironi,et al.  Hemopressins and other hemoglobin‐derived peptides in mouse brain: comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice , 2010, Journal of neurochemistry.

[119]  J. Wess,et al.  Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular "cross-talk" between G-protein-linked receptors. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Aashish Manglik,et al.  Structure of the δ-opioid receptor bound to naltrindole , 2012, Nature.

[121]  Y. Uezono,et al.  mu-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: electrophysiological and FRET assay analysis. , 2008, Journal of pharmacological sciences.

[122]  K. Fuxe,et al.  Neurotransmitter receptor heteromers and their integrative role in ‘local modules’: The striatal spine module , 2007, Brain Research Reviews.

[123]  D. Selley,et al.  Effects of chronic morphine administration on mu opioid receptor- stimulated [35S]GTPgammaS autoradiography in rat brain , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  L. Young,et al.  The neurobiology of pair bonding , 2004, Nature Neuroscience.

[125]  T. Ueda,et al.  Adenosine A2a blockade prevents synergy between μ-opiate and cannabinoid CB1 receptors and eliminates heroin-seeking behavior in addicted rats , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[126]  D. Jackson,et al.  Role of D1 and D2 dopamine receptors in mediating locomotor activity elicited from the nucleus accumbens of rats , 1989, Brain Research.

[127]  S. R. Nash,et al.  Dopamine receptors: from structure to function. , 1998, Physiological reviews.

[128]  M. E. Lewis,et al.  Endogenous opioids: biology and function. , 1984, Annual review of neuroscience.

[129]  B. O'dowd,et al.  Dopamine D1-D2 Receptor Heteromer-mediated Calcium Release Is Desensitized by D1 Receptor Occupancy with or without Signal Activation , 2010, The Journal of Biological Chemistry.

[130]  Shaoqiu He,et al.  Facilitation of μ-Opioid Receptor Activity by Preventing δ-Opioid Receptor-Mediated Codegradation , 2011, Neuron.

[131]  C. Ledent,et al.  CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis , 2006, Nature Medicine.

[132]  V. Watts,et al.  D2 Dopamine Receptors Modulate Gα-Subunit Coupling of the CB1 Cannabinoid Receptor , 2004, Journal of Pharmacology and Experimental Therapeutics.

[133]  Patrick E. Rothwell,et al.  Protein Kinase C Mediates the Synergistic Interaction Between Agonists Acting at α2-Adrenergic and Delta-Opioid Receptors in Spinal Cord , 2009, The Journal of Neuroscience.

[134]  G. Milligan,et al.  Heteromultimerization of Cannabinoid CB1 Receptor and Orexin OX1 Receptor Generates a Unique Complex in Which Both Protomers Are Regulated by Orexin A* , 2011, The Journal of Biological Chemistry.

[135]  B. O'dowd,et al.  Deletion of dopamine D1 and D3 receptors differentially affects spontaneous behaviour and cocaine‐induced locomotor activity, reward and CREB phosphorylation , 2005, The European journal of neuroscience.

[136]  L. Devi,et al.  Oligomerization of opioid receptors. , 2002, Methods.

[137]  L. Horrocks,et al.  Separation of bovine brain mono- and diacylglycerol lipases by heparin sepharose affinity chromatography. , 1984, Biochemical and biophysical research communications.

[138]  L. Devi,et al.  The Highs and Lows of Cannabinoid Receptor Expression in Disease: Mechanisms and Their Therapeutic Implications , 2011, Pharmacological Reviews.

[139]  B. Kieffer,et al.  Deficit in Attachment Behavior in Mice Lacking the µ-Opioid Receptor Gene , 2004, Science.

[140]  Jordi Ortiz,et al.  Circadian-Related Heteromerization of Adrenergic and Dopamine D4 Receptors Modulates Melatonin Synthesis and Release in the Pineal Gland , 2012, PLoS biology.

[141]  A. Faron-Górecka,et al.  Mechanism of action of clozapine in the context of dopamine D1-D2 receptor hetero-dimerization--a working hypothesis. , 2008, Pharmacological reports : PR.

[142]  L. Devi,et al.  Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[143]  L. Devi,et al.  Dimerization with Cannabinoid Receptors Allosterically Modulates Delta Opioid Receptor Activity during Neuropathic Pain , 2012, PloS one.

[144]  S. Aicher,et al.  μ-Opioid Receptors Often Colocalize with the Substance P Receptor (NK1) in the Trigeminal Dorsal Horn , 2000, The Journal of Neuroscience.

[145]  W. Hauber,et al.  Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A2A receptors in the caudate‐putamen of rats , 2001, The European journal of neuroscience.

[146]  M. Laruelle,et al.  Neurobiology of dopamine in schizophrenia. , 2007, International review of neurobiology.

[147]  P. Sokoloff,et al.  Involvement of the direct striatonigral pathway in levodopa‐induced sensitization in 6‐hydroxydopamine‐lesioned rats , 2000, The European journal of neuroscience.

[148]  N. E. Buckley The peripheral cannabinoid receptor knockout mice: an update , 2008, British journal of pharmacology.

[149]  A. Ribeiro-da-Silva,et al.  Coexpression of α2A‐adrenergic and δ‐opioid receptors in substance P‐containing terminals in rat dorsal horn , 2009, The Journal of comparative neurology.

[150]  B. Hudson,et al.  Physical and functional interaction between CB1 cannabinoid receptors and β2‐adrenoceptors , 2010, British journal of pharmacology.

[151]  E. V. Bockstaele,et al.  Dopamine-D1 and δ-opioid receptors co-exist in rat striatal neurons , 2006, Neuroscience Letters.

[152]  W. Bowen,et al.  Differential antagonism of opioid delta antinociception by [D-Ala2,Leu5,Cys6]enkephalin and naltrindole 5'-isothiocyanate: evidence for delta receptor subtypes. , 1991, The Journal of pharmacology and experimental therapeutics.

[153]  Pierre Corvol,et al.  Polar Residues in the Transmembrane Domains of the Type 1 Angiotensin II Receptor Are Required for Binding and Coupling , 1996, The Journal of Biological Chemistry.

[154]  R. Shigemoto,et al.  GABAB-receptor subtypes assemble into functional heteromeric complexes , 1998, Nature.

[155]  R. Doi,et al.  Interactions of opioid and chemokine receptors: oligomerization of mu, kappa, and delta with CCR5 on immune cells. , 2002, Experimental cell research.

[156]  Krzysztof Palczewski,et al.  Structure of the rhodopsin dimer: a working model for G-protein-coupled receptors. , 2006, Current opinion in structural biology.

[157]  K. Fuxe,et al.  Trafficking of adenosine A2A and dopamine D2 receptors , 2007, Journal of Molecular Neuroscience.

[158]  L. Devi,et al.  Allosteric Interactions between δ and κ Opioid Receptors in Peripheral Sensory Neurons , 2012, Molecular Pharmacology.

[159]  T. Hökfelt,et al.  Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. , 1981, Acta physiologica Scandinavica.

[160]  Lakshmi A. Devi,et al.  G protein coupled receptor dimerization: implications in modulating receptor function , 2001, Journal of Molecular Medicine.

[161]  K. Fuxe,et al.  Adenosine A1 Receptor-mediated Modulation of Dopamine D1 Receptors in Stably Cotransfected Fibroblast Cells* , 1998, The Journal of Biological Chemistry.

[162]  Lakshmi A. Devi,et al.  A role for heterodimerization of μ and δ opiate receptors in enhancing morphine analgesia , 2004 .

[163]  D. Gell,et al.  The detection and quantitation of protein oligomerization. , 2012, Advances in experimental medicine and biology.

[164]  David J. Daniels,et al.  Absence of conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores. , 2007, European journal of pharmacology.

[165]  L. Devi,et al.  INTERACTIONS BETWEEN δ OPIOID RECEPTORS AND α2A‐ADRENOCEPTORS , 2004, Clinical and experimental pharmacology & physiology.

[166]  A. Dierich,et al.  Mice deficient for δ- and μ-opioid receptors exhibit opposing alterations of emotional responses , 2000, Nature Genetics.

[167]  Brian Dean,et al.  Clozapine decreases [3H] CP 55940 binding to the cannabinoid1 receptor in the rat nucleus accumbens , 2005, Naunyn-Schmiedeberg's Archives of Pharmacology.

[168]  G. Pasternak,et al.  Dimerization of morphine and orphanin FQ/nociceptin receptors: generation of a novel opioid receptor subtype. , 2002, Biochemical and biophysical research communications.

[169]  C. Gerfen,et al.  Cocaine self-administration differentially alters mRNA expression of striatal peptides. , 1992, Brain research. Molecular brain research.

[170]  B. Roques,et al.  Disruption of the κ‐opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective κ‐agonist U‐50,488H and attenuates morphine withdrawal , 1998, The EMBO journal.

[171]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[172]  E. V. Bockstaele,et al.  Cocaine withdrawal-induced trafficking of delta-opioid receptors in rat nucleus accumbens , 2008, Brain Research.

[173]  Zhou-Feng Chen,et al.  Cellular Basis of Itch Sensation , 2009, Science.

[174]  J. Seamans,et al.  Dopamine Receptor Signaling , 2004, Journal of receptor and signal transduction research.

[175]  J. Grushko,et al.  Novel endogenous peptide agonists of cannabinoid receptors , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[176]  N. Lanthier,et al.  The metabolic syndrome: how it may influence hepatic stellate cell activation and hepatic fibrosis , 2009, Current opinion in clinical nutrition and metabolic care.

[177]  D. Filliol,et al.  Motivational Effects of Cannabinoids Are Mediated by μ-Opioid and κ-Opioid Receptors , 2002, The Journal of Neuroscience.

[178]  Talia N. Lerner,et al.  Endocannabinoid Signaling Mediates Psychomotor Activation by Adenosine A2A Antagonists , 2010, The Journal of Neuroscience.

[179]  Tomohisa Mori,et al.  Differential effects of μ-opioid, δ-opioid and κ-opioid receptor agonists on dopamine receptor agonist-induced climbing behavior in mice , 2006, Behavioural pharmacology.

[180]  D. Banville,et al.  Proenkephalin A gene products activate a new family of sensory neuron–specific GPCRs , 2002, Nature Neuroscience.

[181]  P. Hales PRURITUS AFTER EPIDURAL MORPHINE , 1980, The Lancet.

[182]  Mario Mellado,et al.  Ligand stabilization of CXCR4/δ‐opioid receptor heterodimers reveals a mechanism for immune response regulation , 2008, European journal of immunology.

[183]  Brigitte L. Kieffer,et al.  Recent advances in molecular recognition and signal transduction of active peptides: Receptors for opioid peptides , 1995, Cellular and Molecular Neurobiology.

[184]  A. Charles,et al.  Coexpression of delta-opioid receptors with micro receptors in GH3 cells changes the functional response to micro agonists from inhibitory to excitatory. , 2003, Molecular pharmacology.

[185]  B. O'dowd,et al.  Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth , 2009, Proceedings of the National Academy of Sciences.

[186]  S. Rees,et al.  Monitoring Receptor Oligomerization Using Time-resolved Fluorescence Resonance Energy Transfer and Bioluminescence Resonance Energy Transfer , 2001, The Journal of Biological Chemistry.

[187]  T. Rubino,et al.  Molecular and cellular basis of cannabinoid and opioid interactions , 2005, Pharmacology Biochemistry and Behavior.

[188]  A. Takemori,et al.  Characteristics of μ and δ opioid binding sites in striatal slices of morphine-tolerant and -dependent mice , 1991 .

[189]  Lakshmi A Devi,et al.  μ opioid and CB1 cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis , 2006, British journal of pharmacology.

[190]  E. Unterwald,et al.  Dopamine–opioid interactions in the rat striatum: a modulatory role for dopamine D1 receptors in delta opioid receptor-mediated signal transduction , 2000, Neuropharmacology.

[191]  R. Maldonado,et al.  Involvement of the opioid system in the anxiolytic-like effects induced by Δ9-tetrahydrocannabinol , 2002, Psychopharmacology.

[192]  N. Xu,et al.  Supraspinal administration of apelin-13 induces antinociception via the opioid receptor in mice , 2009, Peptides.

[193]  H. Anisman,et al.  Uncoupling the dopamine D1-D2 receptor complex exerts antidepressant-like effects , 2010, Nature Medicine.

[194]  B. O'dowd,et al.  D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum , 2007, Proceedings of the National Academy of Sciences.

[195]  D. Viggiano,et al.  Dopamine phenotype and behaviour in animal models: in relation to attention deficit hyperactivity disorder , 2003, Neuroscience & Biobehavioral Reviews.

[196]  Joshua F. Nitsche,et al.  Retention of Supraspinal Delta-like Analgesia and Loss of Morphine Tolerance in δ Opioid Receptor Knockout Mice , 1999, Neuron.

[197]  U. Kumar,et al.  Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. , 2000, Science.

[198]  K. Fuxe,et al.  Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonist binding sites , 1996, Neuroscience Letters.

[199]  E. Lakatta,et al.  Opioid peptide receptor stimulation reverses beta-adrenergic effects in rat heart cells. , 1997, The American journal of physiology.

[200]  P. Sokoloff,et al.  D2/D3 Dopamine Receptor Heterodimers Exhibit Unique Functional Properties* , 2001, The Journal of Biological Chemistry.

[201]  S. Padilla-Parra,et al.  FRET microscopy in the living cell: Different approaches, strengths and weaknesses , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[202]  Charles D Blaha,et al.  Acetylcholine–Dopamine Interactions in the Pathophysiology and Treatment of CNS Disorders , 2010, CNS neuroscience & therapeutics.

[203]  W. A. Hill,et al.  Anandamide hydroxylation by brain lipoxygenase:metabolite structures and potencies at the cannabinoid receptor. , 1995, Biochimica et biophysica acta.

[204]  S. Fuchs,et al.  Human D3 dopamine receptor in the medulloblastoma TE671 cell line: cross‐talk between D1 and D3 receptors , 1998, FEBS letters.

[205]  Stephen P. Hunt,et al.  Rewarding effects of opiates are absent in mice lacking the receptor for substance P , 2000, Nature.

[206]  K. Fuxe,et al.  Receptor-receptor interactions as an integrative mechanism in nerve cells , 2007, Molecular Neurobiology.

[207]  T. Hébert,et al.  D2-like dopamine and β-adrenergic receptors form a signaling complex that integrates Gs- and Gi-mediated regulation of adenylyl cyclase. , 2012, Cellular signalling.

[208]  Raymond C Stevens,et al.  Discovery of new GPCR biology: one receptor structure at a time. , 2009, Structure.

[209]  R. Gainetdinov,et al.  The Physiology, Signaling, and Pharmacology of Dopamine Receptors , 2011, Pharmacological Reviews.

[210]  G. Köhr,et al.  Role of heteromer formation in GABAB receptor function. , 1999, Science.

[211]  Julia C. Lemos,et al.  The Dysphoric Component of Stress Is Encoded by Activation of the Dynorphin κ-Opioid System , 2008, The Journal of Neuroscience.

[212]  Alan Wise,et al.  Heterodimerization is required for the formation of a functional GABAB receptor , 1998, Nature.

[213]  M. Herkenham,et al.  International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors , 2002, Pharmacological Reviews.

[214]  N. Ueda,et al.  Molecular Characterization of a Phospholipase D Generating Anandamide and Its Congeners* , 2004, Journal of Biological Chemistry.

[215]  J. Nobrega,et al.  Differential susceptibility to ethanol and amphetamine sensitization in dopamine D3 receptor-deficient mice , 2009, Psychopharmacology.

[216]  F. Ciruela,et al.  Lighting up multiprotein complexes: lessons from GPCR oligomerization. , 2010, Trends in biotechnology.

[217]  Manuela Pfeiffer,et al.  Heterodimerization of Somatostatin and Opioid Receptors Cross-modulates Phosphorylation, Internalization, and Desensitization* , 2002, The Journal of Biological Chemistry.

[218]  Roy G. Smith,et al.  Apo-Ghrelin Receptor Forms Heteromers with DRD2 in Hypothalamic Neurons and Is Essential for Anorexigenic Effects of DRD2 Agonism , 2012, Neuron.

[219]  S. Nakanishi,et al.  Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor , 2000, Nature.

[220]  L. Stone,et al.  alpha(2C)-Adrenergic receptors mediate spinal analgesia and adrenergic-opioid synergy. , 2002, The Journal of pharmacology and experimental therapeutics.

[221]  N. Abul-Husn,et al.  Augmentation of spinal morphine analgesia and inhibition of tolerance by low doses of μ‐ and δ‐opioid receptor antagonists , 2007 .

[222]  S. Salvadori,et al.  The nociceptin/orphanin FQ receptor antagonist, [Nphe1]NC(1‐13)NH2, potentiates morphine analgesia , 2000, Neuroreport.

[223]  M. Millan,et al.  Dopamine D2-D3 receptor heteromers: pharmacological properties and therapeutic significance. , 2010, Current opinion in pharmacology.

[224]  J. González-Maeso GPCR oligomers in pharmacology and signaling , 2011, Molecular Brain.

[225]  Jayaram Chandrashekar,et al.  An amino-acid taste receptor , 2002, Nature.

[226]  Michele Zoli,et al.  Coaggregation, Cointernalization, and Codesensitization of Adenosine A2A Receptors and Dopamine D2Receptors* , 2002, The Journal of Biological Chemistry.

[227]  M. Martres,et al.  Dopamine activation of the arachidonic acid cascade as a basis for D1D2 receptor synergism , 1991, Nature.

[228]  J. Javitch,et al.  CODA-RET reveals functional selectivity as a result of GPCR heteromerization , 2011, Nature chemical biology.

[229]  L. Stone,et al.  The α2a Adrenergic Receptor Subtype Mediates Spinal Analgesia Evoked by α2 Agonists and Is Necessary for Spinal Adrenergic–Opioid Synergy , 1997, The Journal of Neuroscience.

[230]  L. Devi,et al.  Exploring a role for heteromerization in GPCR signalling specificity. , 2011, The Biochemical journal.

[231]  B. Kieffer Opioids: first lessons from knockout mice. , 1999, Trends in pharmacological sciences.

[232]  K. Fuxe,et al.  Adenosine A1 receptor blockade selectively potentiates the motor effects induced by dopamine D1 receptor stimulation in rodents , 1996, Neuroscience Letters.

[233]  Bryan L. Roth,et al.  Structure of the Nociceptin/Orphanin FQ Receptor in Complex with a Peptide Mimetic , 2012, Nature.

[234]  A. IJzerman,et al.  G Protein-Coupled Receptor Heteromerization: A Role in Allosteric Modulation of Ligand Binding , 2011, Molecular Pharmacology.

[235]  Lakshmi A. Devi,et al.  Heterodimerization of μ and δ Opioid Receptors: A Role in Opiate Synergy , 2000, The Journal of Neuroscience.

[236]  G. Pasternak,et al.  Functional blockade of opioid analgesia by orphanin FQ/nociceptin. , 1998, Biochemical pharmacology.

[237]  B. O'dowd,et al.  Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. , 2000, The Journal of biological chemistry.

[238]  T. Insel,et al.  Cellular Mechanisms of Social Attachment , 2001, Hormones and Behavior.

[239]  C. Ramesha,et al.  Synthesis of Prostaglandin E2 Ethanolamide from Anandamide by Cyclooxygenase-2* , 1997, The Journal of Biological Chemistry.

[240]  C. Caldarera,et al.  Opioid receptors in rat cardiac sarcolemma: effect of phenylephrine and isoproterenol. , 1989, Biochimica et biophysica acta.

[241]  H. Suh,et al.  Delta but not mu-opioid receptors in the spinal cord are involved in antinociception induced by beta-endorphin given intracerebroventricularly in mice. , 1990, The Journal of pharmacology and experimental therapeutics.

[242]  K. Fuxe,et al.  Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine A1/dopamine D1 receptor interactions in the basal ganglia 1 Published on the World Wide Web on 12 January 1998. 1 , 1998, Brain Research Reviews.

[243]  T. Yeh,et al.  Heterodimerization of opioid receptor‐like 1 and µ‐opioid receptors impairs the potency of µ receptor agonist , 2005, Journal of neurochemistry.

[244]  J. Whistler,et al.  Heteromerization of the μ- and δ-Opioid Receptors Produces Ligand-Biased Antagonism and Alters μ-Receptor Trafficking , 2011, Journal of Pharmacology and Experimental Therapeutics.

[245]  P. Spano,et al.  Reciprocal Regulation of Dopamine D1 and D3 Receptor Function and Trafficking by Heterodimerization , 2008, Molecular Pharmacology.

[246]  C. Duarte,et al.  The interaction between dopamine D2‐like and beta‐adrenergic receptors in the prefrontal cortex is altered by mood‐stabilizing agents , 2006, Journal of neurochemistry.

[247]  K. Jellinger,et al.  Up-regulation of striatal adenosine A2A receptors in schizophrenia , 2003, Neuroreport.

[248]  P. Sokoloff,et al.  Functional implications of multiple dopamine receptor subtypes: the D1/D3 receptor coexistence 1 Published on the World Wide Web on 24 November 1997. 1 , 1998, Brain Research Reviews.

[249]  L. Devi,et al.  Opioid Receptor Oligomerization , 2003 .

[250]  Susan R. George,et al.  Met-enkephalin concentrations in striatum respond reciprocally to alterations in dopamine neurotransmission , 1987, Peptides.

[251]  H. Kung,et al.  Mu opioid receptor gene expression in immune cells. , 1995, Biochemical and biophysical research communications.

[252]  R. Doi,et al.  Morphine Induces Gene Expression of CCR5 in Human CEM x174 Lymphocytes* , 2000, The Journal of Biological Chemistry.

[253]  J. Javitch,et al.  6′-Guanidinonaltrindole (6′-GNTI) Is a G Protein-biased κ-Opioid Receptor Agonist That Inhibits Arrestin Recruitment* , 2012, The Journal of Biological Chemistry.

[254]  F. Ciruela,et al.  Striatal Adenosine A2A and Cannabinoid CB1 Receptors Form Functional Heteromeric Complexes that Mediate the Motor Effects of Cannabinoids , 2007, Neuropsychopharmacology.

[255]  L. Limbird,et al.  Hetero-oligomers of alpha2A-adrenergic and mu-opioid receptors do not lead to transactivation of G-proteins or altered endocytosis profiles. , 2004, Biochemical Society transactions.

[256]  J. Mulder,et al.  Increased Abundance of Opioid Receptor Heteromers After Chronic Morphine Administration , 2010, Science Signaling.

[257]  Susan R. George,et al.  A Role for the Distal Carboxyl Tails in Generating the Novel Pharmacology and G Protein Activation Profile of μ and δ Opioid Receptor Hetero-oligomers* , 2005, Journal of Biological Chemistry.

[258]  Yanjiong Chen,et al.  Distinct roles of dopamine D3 receptors in modulating methamphetamine‐induced behavioral sensitization and ultrastructural plasticity in the shell of the nucleus accumbens , 2012, Journal of neuroscience research.

[259]  Gemma Navarro,et al.  Detection of heteromerization of more than two proteins by sequential BRET-FRET , 2008, Nature Methods.

[260]  B. McEwen,et al.  Modulation by vasoactive intestinal peptide (VIP) of serotonin receptors in membranes from rat hippocampus , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[261]  Susana R. Neves,et al.  Receptor Heteromerization Expands the Repertoire of Cannabinoid Signaling in Rodent Neurons , 2012, PloS one.

[262]  A. Maggi,et al.  beta-Adrenergic regulation of alpha 2-adrenergic receptors in the central nervous system. , 1980, Science.

[263]  P. Sokoloff,et al.  Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: opposite and synergistic functional interactions , 1998, The European journal of neuroscience.

[264]  M. Herkenham,et al.  A quantitative study of [3H]D-Ala2-D-Leu5-enkephalin binding to rat brain membranes. Evidence that oxymorphone is a noncompetitive inhibitor of the lower affinity delta-binding site. , 1985, Molecular pharmacology.

[265]  S. T. Boyd The Endocannabinoid System , 2006, Pharmacotherapy.

[266]  E I Canela,et al.  Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[267]  R. Franco,et al.  Reinforcing and neurochemical effects of cannabinoid CB1 receptor agonists, but not cocaine, are altered by an adenosine A2A receptor antagonist , 2011, Addiction biology.

[268]  Pierre-Alexandre Vidi,et al.  Adenosine A2A receptors assemble into higher‐order oligomers at the plasma membrane , 2008, FEBS letters.

[269]  B. O'dowd,et al.  Unravelling the roles of the apelin system: prospective therapeutic applications in heart failure and obesity. , 2006, Trends in pharmacological sciences.

[270]  A. Gintzler,et al.  Formation of μ-/κ-opioid receptor heterodimer is sex-dependent and mediates female-specific opioid analgesia , 2010, Proceedings of the National Academy of Sciences of the United States of America.

[271]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[272]  M. von Zastrow,et al.  Neurokinin 1 Receptors Regulate Morphine-Induced Endocytosis and Desensitization of μ-Opioid Receptors in CNS Neurons , 2009, The Journal of Neuroscience.

[273]  M. Glass,et al.  Concurrent Stimulation of Cannabinoid Cb1 and Dopamine D2 Receptors Augments Camp Accumulation in Striatal Neurons: Evidence for a G S Linkage to the Cb1 Receptor , 1997 .

[274]  P. Majerus,et al.  Characterization of 1,2-diacylglycerol hydrolysis in human platelets. Demonstration of an arachidonoyl-monoacylglycerol intermediate. , 1983, The Journal of biological chemistry.

[275]  F. Ciruela,et al.  Detection of higher‐order G protein‐coupled receptor oligomers by a combined BRET–BiFC technique , 2008, FEBS letters.

[276]  F. Ciruela,et al.  Detection of Heteromers Formed by Cannabinoid CB1, Dopamine D2, and Adenosine A2A G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer , 2008, TheScientificWorldJournal.

[277]  David J. Daniels,et al.  Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[278]  R. Osman,et al.  The heterodimeric sweet taste receptor has multiple potential ligand binding sites. , 2006, Current pharmaceutical design.

[279]  B B Fredholm,et al.  Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[280]  L. Grégoire,et al.  Antiparkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys , 1999, Neurology.

[281]  R. Maldonado,et al.  Cannabinoid receptor and WIN 55 212‐2‐stimulated [35S]‐GTPγS binding in the brain of mu‐, delta‐ and kappa‐opioid receptor knockout mice , 2003, The European journal of neuroscience.

[282]  K. Fuxe,et al.  Intramembrane receptor–receptor interactions: a novel principle in molecular medicine , 2006, Journal of Neural Transmission.

[283]  B. Cravatt,et al.  Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[284]  L. Devi,et al.  Functional interactions between mu opioid and alpha 2A-adrenergic receptors. , 2003, Molecular pharmacology.

[285]  R. Gainetdinov,et al.  BRET biosensors to study GPCR biology, pharmacology, and signal transduction , 2012, Front. Endocrin..

[286]  Kenneth A. Jones,et al.  GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2 , 1998, Nature.

[287]  J. Lanciego,et al.  Cannabinoid Receptors CB1 and CB2 Form Functional Heteromers in Brain* , 2012, The Journal of Biological Chemistry.

[288]  M. Abood,et al.  GPR55 and GPR35 and their relationship to cannabinoid and lysophospholipid receptors. , 2013, Life sciences.

[289]  S. Gauthier,et al.  Neurobehavioral effects of intrathecal somatostatinergic treatment in subhuman primates , 1988, Neurology.

[290]  F. Porreca,et al.  Synergistic Antinociceptive Interactions of Morphine and Clonidine in Rats with Nerve‐ligation Injury , 1997, Anesthesiology.

[291]  David J. Daniels,et al.  Interaction of Bivalent Ligand KDN21 with Heterodimeric δ-κ Opioid Receptors in Human Embryonic Kidney 293 Cells , 2005, Molecular Pharmacology.

[292]  Brigitte L. Kieffer,et al.  Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the µ-opioid-receptor gene , 1996, Nature.

[293]  Yan-Gang Sun,et al.  Unidirectional Cross-Activation of GRPR by MOR1D Uncouples Itch and Analgesia Induced by Opioids , 2011, Cell.