Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement

This chapter presents an overview of polynomial spline theory, with special emphasis on the B-spline representation, spline approximation properties, and hierarchical spline refinement. We start with the definition of B-splines by means of a recurrence relation, and derive several of their most important properties. In particular, we analyze the piecewise polynomial space they span. Then, we present the construction of a suitable spline quasi-interpolant based on local integrals, in order to show how well any function and its derivatives can be approximated in a given spline space. Finally, we provide a unified treatment of recent results on hierarchical splines. We especially focus on the so-called truncated hierarchical B-splines and their main properties. Our presentation is mainly confined to the univariate spline setting, but we also briefly address the multivariate setting via the tensor-product construction and the multivariate extension of the hierarchical approach.

[1]  Karl Scherer,et al.  New Upper Bound for the B-Spline Basis Condition Number , 1999 .

[2]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .

[3]  David R. Forsey,et al.  Surface fitting with hierarchical splines , 1995, TOGS.

[4]  Allan Pinkus,et al.  The B-spline recurrence relations of Chakalov and of Popoviciu , 2003, J. Approx. Theory.

[5]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[6]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[7]  Hendrik Speleers,et al.  Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.

[8]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[9]  Howard C. Elman,et al.  Algebraic Analysis of the Hierarchical Basis Preconditioner , 1995, SIAM J. Matrix Anal. Appl..

[10]  Klaus Hllig,et al.  Approximation and Modeling with B-Splines , 2013 .

[11]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  I. J. Schoenberg,et al.  Cardinal interpolation and spline functions , 1969 .

[13]  Hendrik Speleers,et al.  Hierarchical spline spaces: quasi-interpolants and local approximation estimates , 2017, Adv. Comput. Math..

[14]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[15]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[16]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[17]  M. Marsden An identity for spline functions with applications to variation-diminishing spline approximation☆ , 1970 .

[18]  A Note on the Condition Numbers of the B-Spline Bases , 1978 .

[19]  Andrea Bressan,et al.  Some properties of LR-splines , 2013, Comput. Aided Geom. Des..

[20]  M. Cox The Numerical Evaluation of B-Splines , 1972 .

[21]  Stefan Takacs,et al.  Approximation error estimates and inverse inequalities for B-splines of maximum smoothness , 2015, 1502.03733.

[22]  L. Schumaker,et al.  Degree raising for splines , 1986 .

[23]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[24]  H. Yserentant Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .

[25]  W. Rudin Real and complex analysis , 1968 .

[26]  C. D. Boor,et al.  Spline approximation by quasiinterpolants , 1973 .

[27]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[28]  Carl de Boor,et al.  On Local Linear Functionals which Vanish at all B-Splines but One. , 1975 .

[29]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[30]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[31]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part B. On the problem of osculatory interpolation. A second class of analytic approximation formulae , 1946 .

[32]  Larry Schumaker,et al.  Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .

[33]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..

[34]  I. J. Schoenberg,et al.  On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .

[35]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[36]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[37]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[38]  H. Speleers Inner products of box splines and their derivatives , 2015 .

[39]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[40]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[41]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[42]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..