Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement
暂无分享,去创建一个
[1] Karl Scherer,et al. New Upper Bound for the B-Spline Basis Condition Number , 1999 .
[2] I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .
[3] David R. Forsey,et al. Surface fitting with hierarchical splines , 1995, TOGS.
[4] Allan Pinkus,et al. The B-spline recurrence relations of Chakalov and of Popoviciu , 2003, J. Approx. Theory.
[5] Tom Lyche,et al. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .
[6] Giancarlo Sangalli,et al. Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.
[7] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[8] Gershon Elber,et al. Geometric modeling with splines - an introduction , 2001 .
[9] Howard C. Elman,et al. Algebraic Analysis of the Hierarchical Basis Preconditioner , 1995, SIAM J. Matrix Anal. Appl..
[10] Klaus Hllig,et al. Approximation and Modeling with B-Splines , 2013 .
[11] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[12] I. J. Schoenberg,et al. Cardinal interpolation and spline functions , 1969 .
[13] Hendrik Speleers,et al. Hierarchical spline spaces: quasi-interpolants and local approximation estimates , 2017, Adv. Comput. Math..
[14] Giancarlo Sangalli,et al. ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .
[15] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[16] Eitan Grinspun,et al. Natural hierarchical refinement for finite element methods , 2003 .
[17] M. Marsden. An identity for spline functions with applications to variation-diminishing spline approximation☆ , 1970 .
[18] A Note on the Condition Numbers of the B-Spline Bases , 1978 .
[19] Andrea Bressan,et al. Some properties of LR-splines , 2013, Comput. Aided Geom. Des..
[20] M. Cox. The Numerical Evaluation of B-Splines , 1972 .
[21] Stefan Takacs,et al. Approximation error estimates and inverse inequalities for B-splines of maximum smoothness , 2015, 1502.03733.
[22] L. Schumaker,et al. Degree raising for splines , 1986 .
[23] Hendrik Speleers,et al. On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.
[24] H. Yserentant. Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .
[25] W. Rudin. Real and complex analysis , 1968 .
[26] C. D. Boor,et al. Spline approximation by quasiinterpolants , 1973 .
[27] C. D. Boor,et al. On Calculating B-splines , 1972 .
[28] Carl de Boor,et al. On Local Linear Functionals which Vanish at all B-Splines but One. , 1975 .
[29] Josef Hoschek,et al. Fundamentals of computer aided geometric design , 1996 .
[30] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[31] I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions. Part B. On the problem of osculatory interpolation. A second class of analytic approximation formulae , 1946 .
[32] Larry Schumaker,et al. Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .
[33] Hendrik Speleers,et al. Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..
[34] I. J. Schoenberg,et al. On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .
[35] Eitan Grinspun,et al. CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..
[36] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[37] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[38] H. Speleers. Inner products of box splines and their derivatives , 2015 .
[39] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[40] W. Boehm. Inserting New Knots into B-spline Curves , 1980 .
[41] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[42] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..