Advances in statistical pattern recognition

Statistical pattern recognition is now a mature discipline which has been successfully applied in several application domains. The primary goal in statistical pattern recognition is classification, where a pattern vector is assigned to one of a finite number of classes and each class is characterized by a probability density function on the measured features. A pattern vector is viewed as a point in the multidimensional space defined by the features. Design of a recognition system based on this paradigm requires careful attention to the following issues: type of classifier (single-stage vs. hierarchical), feature selection, estimation of classification error, parametric vs. nonparametric decision rules, and utilizing contextual information. Current research emphasis in pattern recognition is on designing efficient algorithms, studying small sample properties of various estimators and decision rules, implementing the algorithms on novel computer architecture, and incorporating context and domain-specific knowledge in decision making.

[1]  Michael Kallay Convex Hull Made Easy , 1986, Inf. Process. Lett..

[2]  Donald H. Foley Considerations of sample and feature size , 1972, IEEE Trans. Inf. Theory.

[3]  Bidyut Baran Chaudhuri Applications of Quadtree, Octree, and Binary Tree Decomposition Techniques to Shape Analysis and Pattern Recognition , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  King-Sun Fu,et al.  A Step Towards Unification of Syntactic and Statistical Pattern Recognition , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Behrooz Kamgar-Parsi,et al.  An improved branch and bound algorithm for computing k-nearest neighbors , 1985, Pattern Recognit. Lett..

[6]  Andrew K. C. Wong,et al.  Synthesizing Knowledge: A Cluster Analysis Approach Using Event Covering , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Salvatore D. Morgera Linear, structured covariance estimation: An application to pattern classification for remote sensing , 1986, Pattern Recognit. Lett..

[8]  Anil K. Jain,et al.  Testing for Uniformity in Multidimensional Data , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Balakrishnan Chandrasekaran,et al.  FROM NUMBERS TO SYMBOLS TO KNOWLEDGE STRUCTURES: PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE PERSPECTIVES ON THE CLASSIFICATION TASK , 1986 .

[10]  William H. E. Day,et al.  Extremes in the Complexity of Computing Metric Distances Between Partitions , 1984, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Keinosuke Fukunaga,et al.  The optimum nonlinear features for a scatter criterion in discriminant analysis , 1977, IEEE Trans. Inf. Theory.

[12]  I. K. Sethi,et al.  Hierarchical Classifier Design Using Mutual Information , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[14]  Laurent Miclet,et al.  Approximative fast nearest-neighbour recognition , 1983, Pattern Recognit. Lett..

[15]  Anil K. Jain,et al.  A VLSI Systolic Architecture for Pattern Clustering , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Vipin Kumar,et al.  Parallel Branch-and-Bound Formulations for AND/OR Tree Search , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  John Van Ness,et al.  The Use of Shrinkage Estimators in Linear Discriminant Analysis , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Godfried T. Toussaint,et al.  PATTERN RECOGNITION AND GEOMETRICAL COMPLEXITY. , 1980 .

[19]  Paul R. Cohen,et al.  Heuristic reasoning about uncertainty: an artificial intelligence approach , 1984 .

[20]  K. Fukunaga,et al.  Nonparametric Discriminant Analysis , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Witold Malina,et al.  On an Extended Fisher Criterion for Feature Selection , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Anil K. Jain,et al.  Clustering Methodologies in Exploratory Data Analysis , 1980, Adv. Comput..

[23]  Anil K. Jain,et al.  Bootstrap Techniques for Error Estimation , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Gerard V. Trunk,et al.  A Problem of Dimensionality: A Simple Example , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Jack Perkins,et al.  Pattern recognition in practice , 1980 .

[26]  Keinosuke Fukunaga,et al.  Bias of Nearest Neighbor Error Estimates , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Anil K. Jain,et al.  Validity studies in clustering methodologies , 1979, Pattern Recognit..

[28]  Kenneth Jay Supowit,et al.  Topics in Computational Geometry , 1981 .

[29]  Anil K. Jain,et al.  39 Dimensionality and sample size considerations in pattern recognition practice , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[30]  Xiaobo Li,et al.  Tree classifier design with a permutation statistic , 1986, Pattern Recognit..

[31]  Michael G. Thomason,et al.  Syntactic Pattern Recognition, An Introduction , 1978, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Anil K. Jain,et al.  EXPERIMENT ON USING THE FRIEDMAN-RAFSKY TEST TO DETERMINE THE MULTIVARIATE NORMALITY OF A DATA SET. , 1985 .

[33]  Theodosios Pavlidis,et al.  Structural pattern recognition , 1977 .

[34]  Keinosuke Fukunaga,et al.  A Test of the Gaussian-ness of a Data Set Using Clustering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Paul R. Cohen,et al.  Heuristic Reasoning About Uncertainty , 1983 .

[36]  D. T. Lee,et al.  Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.

[37]  M. R. Chernick,et al.  Application of bootstrap and other resampling techniques: Evaluation of classifier performance , 1985, Pattern Recognit. Lett..

[38]  King-Sun Fu,et al.  Conceptual Clustering in Knowledge Organization , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[40]  Godfried T. Toussaint,et al.  The use of context in pattern recognition , 1978, Pattern Recognit..

[41]  John D. Lowrance,et al.  An Inference Technique for Integrating Knowledge from Disparate Sources , 1981, IJCAI.

[42]  P. Hall Large Sample Optimality of Least Squares Cross-Validation in Density Estimation , 1983 .

[43]  Jan M. Van Campenhout,et al.  On the Possible Orderings in the Measurement Selection Problem , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[44]  King-Sun Fu,et al.  Syntactic Pattern Recognition And Applications , 1968 .

[45]  King-Sun Fu,et al.  Automated classification of nucleated blood cells using a binary tree classifier , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Alan H. Feiveson Classification by Thresholding , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Jack-Gérard Postaire,et al.  A Fast Algorithm for Nonparametric Probability Density Estimation , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Robert L. Mason,et al.  Some practical aspects of covariance estimation , 1985, Pattern Recognit. Lett..

[49]  Stephen B. Vardeman,et al.  Contextual classification of multispectral image data , 1981, Pattern Recognit..

[50]  Makoto Nagao,et al.  Control strategies in pattern analysis , 1984, Pattern Recognit..

[51]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[52]  John Haslett,et al.  Maximum likelihood discriminant analysis on the plane using a Markovian model of spatial context , 1985, Pattern Recognit..

[53]  Pierre A. Devijver,et al.  Insert and delete algorithms for maintaining dynamic Delaunay triangulations , 1982, Pattern Recognit. Lett..

[54]  Keinosuke Fukunaga,et al.  Generalized Clustering for Problem Localization , 1978, IEEE Transactions on Computers.

[55]  ERKKI OJA,et al.  The ALSM algorithm - an improved subspace method of classification , 1983, Pattern Recognit..

[56]  Roderick Urquhart,et al.  Graph theoretical clustering based on limited neighbourhood sets , 1982, Pattern Recognit..

[57]  Luc Devroye,et al.  Data Structures in Kernel Density Estimation , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[59]  David A. Landgrebe,et al.  Predicting the Required Number of Training Samples , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[60]  George Nagy Candide's Practical Principles of Experimental Pattern Recognition , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[61]  King-Sun Fu,et al.  Pattern Recognition , 1976, Computer.

[62]  N. Nandhakumar,et al.  The artificial intelligence approach to pattern recognition--a perspective and an overview , 1985, Pattern Recognit..

[63]  L. Erman,et al.  Noah-A Bottom-Up Word Hypothesizer for Large-Vocabulary Speech Understanding Systems , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Shingo Tomita,et al.  An optimal orthonormal system for discriminant analysis , 1985, Pattern Recognit..

[65]  Ryszard S. Michalski,et al.  Automated Construction of Classifications: Conceptual Clustering Versus Numerical Taxonomy , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  John Van Ness,et al.  On the dominance of non-parametric Bayes rule discriminant algorithms in high dimensions , 1980, Pattern Recognit..

[67]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[68]  Gautam Biswas,et al.  Evaluation of Projection Algorithms , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Sargur N. Srihari,et al.  An Integrated Algorithm for Text Recognition: Comparison with a Cascaded Algorithm , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Keinosuke Fukunaga,et al.  Classification Error for a Very Large Number of Classes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Keinosuke Fukunaga,et al.  An Optimal Global Nearest Neighbor Metric , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.