Heterogeneous nucleation of ice on surrogates of mineral dust

[1] Field studies have shown that mineral dust particles can act as ice nuclei in cirrus clouds. Here, we present a laboratory investigation of heterogeneous ice nucleation on surrogates of mineral dust particles, in particular pure Arizona test dust (ATD) particles, and ATD particles coated with sulfuric acid. The experiments have been performed using a new apparatus in which ice formation on the particles is determined by optical microscopy at temperatures between 197 and 260 K and relative humidities up to water saturation. The experiments reveal that pure and sulfuric acid coated ATD particles nucleate ice at considerably lower relative humidities than required for homogeneous ice nucleation in liquid aerosols. Nucleation occurred over a broad relative humidity range indicating that the different minerals contained in ATD have different ice nucleation thresholds. No significant difference in the ice nucleation ability of pure and H2SO4 coated ATD particles was observed. Below 240 K, ice nucleated on ATD particles apparently by deposition nucleation. Preactivation of ATD particles, that is, a reduction in supersaturation, required for heterogeneous ice nucleation after a previous ice nucleation event on the same particle, has been observed for temperatures as low as 200 K. Differences of 10–30% in the onset RHice values were obtained for particles with or without preactivation. The results indicate that pure and sulfuric acid coated mineral dust particles may act as efficient ice nuclei in the atmosphere. Preactivation of the particles should be considered when modeling long-range transport of mineral dust particles and their impact on cloud formation.

[1]  M. Baker,et al.  Cloud Microphysics and Climate , 1997 .

[2]  U. Schumann,et al.  In-situ observations of aerosol particles remaining from evaporated cirrus crystals: Comparing clean and polluted air masses , 2002 .

[3]  J. Abbatt,et al.  Infrared Observations of the Response of NaCl, MgCl2, NH4HSO4, and NH4NO3 Aerosols to Changes in Relative Humidity from 298 to 238 K , 2000 .

[4]  E. Weingartner,et al.  Generation of Submicron Arizona Test Dust Aerosol: Chemical and Hygroscopic Properties , 2005 .

[5]  S. Kreidenweis,et al.  The role of heterogeneous freezing nucleation in upper tropospheric clouds: Inferences from SUCCESS , 1998 .

[6]  David Turnbull,et al.  Kinetics of Heterogeneous Nucleation , 1950 .

[7]  G. Ewing,et al.  Water Content and Morphology of Sodium Chloride Aerosol Particles , 1999 .

[8]  Zev Levin,et al.  Chemical and mineralogical analysis of individual mineral dust particles , 2001 .

[9]  H. Hansson,et al.  Cirrus Cloud Occurrence as Function of Ambient Relative Humidity: A Comparison of Observations Obtained during the INCA Experiment , 2003 .

[10]  S. Twomey,et al.  Aerosols, clouds and radiation , 1991 .

[11]  A. Anderson,et al.  Raman and infrared studies of the ferroelectric transition in ammonium sulphate , 1972 .

[12]  Matthew Bailey,et al.  Nucleation effects on the habit of vapour grown ice crystals from −18 to −42°C , 2002 .

[13]  Sonia M. Kreidenweis,et al.  African dust aerosols as atmospheric ice nuclei , 2003 .

[14]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[15]  Ulrike Lohmann,et al.  A parameterization of cirrus cloud formation: Heterogeneous freezing , 2003 .

[16]  T. Onasch,et al.  Infrared spectroscopic study of the deliquescence and efflorescence of ammonium sulfate aerosol as a function of temperature , 1999 .

[17]  R. Pincus,et al.  Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer , 1994, Nature.

[18]  Harald Saathoff,et al.  Ice nucleation on flame soot aerosol of different organic carbon content , 2005 .

[19]  B. J. Mason The nature of ice‐forming nuclei in the atmosphere , 1950 .

[20]  I. Tang,et al.  Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols , 1993 .

[21]  Owen B. Toon,et al.  Atmospheric science: African dust in Florida clouds , 2003, Nature.

[22]  J. Prospero,et al.  Saharan aerosols over the tropical North Atlantic — Mineralogy , 1980 .

[23]  Sonia M. Kreidenweis,et al.  Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures , 2005 .

[24]  M. Molina,et al.  Phase transitions of sea-salt/water mixtures at low temperatures: Implications for ozone chemistry in the polar marine boundary layer , 2000 .

[25]  J. Abbatt,et al.  Deliquescence, efflorescence, and supercooling of ammonium sulfate aerosols at low temperature: Implications for cirrus cloud formation and aerosol phase in the atmosphere , 1999 .

[26]  B. J. Mason Ice‐nucleating properties of clay minerals and stony meteorites , 1960 .

[27]  Hans Rudolf Pruppacher,et al.  Mechanismus der Vereisung unterkühlter Wassertropfen durch disperse Keimsubstanzen , 1955 .

[28]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[29]  B. J. Anderson,et al.  Supersaturation and Time Dependence of Ice Nucleation from the Vapor on Single Crystal Substrates , 1976 .

[30]  N. Fukuta,et al.  Ice Nucleation by Aerosol Particles: Experimental Studies Using a Wedge-Shaped Ice Thermal Diffusion Chamber , 1979 .

[31]  Erratum to “Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy”: [Atmos. Environ. 38 (36) (2004) 6253–6261] , 2005 .

[32]  Thomas Koop,et al.  Review of the vapour pressures of ice and supercooled water for atmospheric applications , 2005 .

[33]  Kinetics of heterogeneous ice nucleation on the surfaces of mineral dust cores inserted into aqueous ammonium sulfate particles , 2003 .

[34]  S. Hoshino,et al.  Dielectric and Thermal Study of ( N H 4 ) 2 S O 4 and ( N H 4 ) 2 Be F 4 Transitions , 1958 .

[35]  L. Gomes,et al.  A comparison of characteristics of aerosol from dust storms in central Asia with soil-derived dust from other regions , 1993 .

[36]  Diana Rodríguez,et al.  The uptake of SO 2 on Saharan dust: a flow tube study , 2005 .

[37]  Natalie M. Mahowald,et al.  Mineral aerosol and cloud interactions , 2003 .

[38]  M. Wutz,et al.  Theory and practice of vacuum technology , 1989 .

[39]  D. Dokken,et al.  Climate change 2001 , 2001 .

[40]  B. J. Mason,et al.  Ice‐nucleating properties of some natural mineral dusts , 1958 .

[41]  A. Laskin,et al.  Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy , 2004 .

[42]  E. E. F. d'Albe Some experiments on the condensation of water vapour at temperatures below 0°c , 1949 .

[43]  Paul J. DeMott,et al.  Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL‐FACE results , 2003 .

[44]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[45]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[46]  B. Luo,et al.  Homogeneous nucleation of NAD and NAT in liquid stratospheric aerosols: insufficient to explain denitrification , 2002 .

[47]  G. Carmichael,et al.  Heterogeneous reactions of NO2 and HNO3 on oxides and mineral dust: A combined laboratory and modeling study , 2001 .

[48]  L. Shao,et al.  Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China , 2005 .

[49]  Max Volmer,et al.  Kinetik der Phasenbildung , 1939 .

[50]  Kenneth Sassen Meteorology: Dusty ice clouds over Alaska , 2005, Nature.

[51]  Michel Legrand,et al.  Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions , 2002 .

[52]  D. Randall,et al.  Liquid and Ice Cloud Microphysics in the CSU General Circulation Model , 1996 .

[53]  Andrew J. Heymsfield,et al.  Upper‐tropospheric relative humidity observations and implications for cirrus ice nucleation , 1998 .

[54]  Yinon Rudich,et al.  Desert dust suppressing precipitation: A possible desertification feedback loop , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  P. Buseck,et al.  Aerosol particles from tropical convective systems: 2. Cloud bases , 2005 .

[56]  Z. Levin,et al.  The Effects of Desert Particles Coated with Sulfate on Rain Formation in the Eastern Mediterranean , 1996 .

[57]  S. C. Mossop Atmospheric ice nuclei , 1963 .

[58]  L. Greenspan Humidity Fixed Points of Binary Saturated Aqueous Solutions , 1977, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry.

[59]  M. Molina,et al.  Heterogeneous nucleation of ice in (NH4)2SO4‐H2O particles with mineral dust immersions , 2002 .

[60]  John B. Nowak,et al.  Infrared spectroscopy of model tropospheric aerosols as a function of relative humidity: Observation of deliquescence and crystallization , 1997 .

[61]  B. Kärcher,et al.  The roles of dynamical variability and aerosols in cirrus cloud formation , 2003 .

[62]  N. Fukuta,et al.  Ice in the Capillaries of Solid Particles and its Effect on their Nucleating Ability , 1965 .

[63]  D. Imre,et al.  AMMONIUM SULFATE : EQUILIBRIUM AND METASTABILITY PHASE DIAGRAMS FROM 40 TO-50 C , 1998 .

[64]  J. Crowley,et al.  Ozone decomposition on Saharan dust: an experimental investigation , 2002 .

[65]  Rosenfeld,et al.  Suppression of rain and snow by urban and industrial air pollution , 2000, Science.

[66]  N. Fukuta Activation of Atmospheric Particles as Ice Nuclei in Cold and Dry Air , 1966 .

[67]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[68]  M. Molina,et al.  A NEW OPTICAL TECHNIQUE TO STUDY AEROSOL PHASE TRANSITIONS : THE NUCLEATION OF ICE FROM H2SO4 AEROSOLS , 1998 .

[69]  John F. B. Mitchell,et al.  Carbon Dioxide and Climate. The Impact of Cloud Parameterization , 1993 .

[70]  Z. Levin,et al.  Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties , 2002 .

[71]  B. Luo,et al.  Water activity as the determinant for homogeneous ice nucleation in aqueous solutions , 2000, Nature.

[72]  K. Gierens On the transition between heterogeneous and homogeneous freezing , 2002 .

[73]  D. Knopf Thermodynamic properties and nucleation processes of upper tropospheric and lower stratospheric aerosol particles , 2003 .

[74]  John Hallett,et al.  A laboratory study of the ice nucleating properties of some mineral particulates , 1968 .

[75]  J. Reid,et al.  Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis , 2003 .

[76]  S. Kreidenweis,et al.  The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components , 1997 .

[77]  R. Zellner,et al.  Mechanism and Kinetics of the Reactions of NO2 or HNO3 with Alumina as a Mineral Dust Model Compound , 2000 .

[78]  I. Tang,et al.  Aerosol growth studies—II. Preparation and growth measurements of monodisperse salt aerosols , 1977 .

[79]  U. Lohmann,et al.  Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity , 2003 .

[80]  J. Hallett The growth of ice crystals on freshly cleaved covellite surfaces , 1961 .

[81]  Zev Levin,et al.  Composition of individual aerosol particles above the Israelian Mediterranean coast during the summer time , 1998 .

[82]  Konrad Mauersberger,et al.  A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K , 1993 .

[83]  P. Buseck,et al.  Aerosol particles from tropical convective systems: Cloud tops and cirrus anvils , 2004 .

[84]  Gilles Bergametti,et al.  Submicron desert dusts: A sandblasting process , 1990 .

[85]  B. Luo,et al.  Comment on the "Thermodynamic dissociation constant of the bisulfate ion from Raman and ion interaction modeling studies of aqueous sulfuric acid at low temperatures". , 2005 .

[86]  K. Desboeufs,et al.  Transport and mixing zone of desert dust and sulphate over Tropical Africa and the Atlantic Ocean region , 2005 .