DNA nanotubes for NMR structure determination of membrane proteins

[1]  S. Harrison,et al.  Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching , 2011, Nature.

[2]  Qingxin Li,et al.  Solution NMR study of integral membrane proteins. , 2011, Current opinion in chemical biology.

[3]  J. Chou,et al.  The structural basis for intramembrane assembly of an activating immunoreceptor complex , 2010, Nature Immunology.

[4]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.

[5]  D. Nietlispach,et al.  Structure determination of the seven-helical transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy , 2010, Nature Structural &Molecular Biology.

[6]  J. Chou,et al.  Solution structure and functional analysis of the influenza B proton channel , 2009, Nature Structural &Molecular Biology.

[7]  Homayoun Valafar,et al.  Phage-induced alignment of membrane proteins enables the measurement and structural analysis of residual dipolar couplings with dipolar waves and lambda-maps. , 2009, Journal of the American Chemical Society.

[8]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[9]  Charles R Sanders,et al.  Solution Nuclear Magnetic Resonance Structure of Membrane-Integral Diacylglycerol Kinase , 2009, Science.

[10]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[11]  B. A. Neto,et al.  Recent Developments in the Chemistry of Deoxyribonucleic Acid (DNA) Intercalators: Principles, Design, Synthesis, Applications and Trends , 2009, Molecules.

[12]  N. Tjandra,et al.  Weak alignment of biomacromolecules in collagen gels: an alternative way to yield residual dipolar couplings for NMR measurements. , 2008, Journal of the American Chemical Society.

[13]  J. Beckwith,et al.  NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. , 2008, Molecular cell.

[14]  S. Corcelli,et al.  The dynamics of water at DNA interfaces: computational studies of Hoechst 33258 bound to DNA. , 2008, Journal of the American Chemical Society.

[15]  Sebastian Hiller,et al.  References and Notes Supporting Online Material Materials and Methods Figures S1 to S5 Table S1 References Solution Structure of the Integral Human Membrane Protein Vdac-1 in Detergent Micelles , 2022 .

[16]  A. Bax,et al.  Liquid Crystalline Phase of G-Tetrad DNA for NMR Study of Detergent-Solubilized Proteins , 2008, Journal of the American Chemical Society.

[17]  J. Gies,et al.  Drugs and their molecular targets: an updated overview , 2008, Fundamental & clinical pharmacology.

[18]  J. Chou,et al.  Structure and mechanism of the M2 proton channel of influenza A virus , 2008, Nature.

[19]  Markus Zweckstetter,et al.  NMR: prediction of molecular alignment from structure using the PALES software , 2008, Nature Protocols.

[20]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[21]  Ali Akbar Saboury,et al.  Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue , 2007 .

[22]  Michael D Reily,et al.  Improving NMR sensitivity by use of salt-tolerant cryogenically cooled probes , 2007, Analytical and bioanalytical chemistry.

[23]  S. Pal,et al.  Ultrafast charge transfer and solvation of DNA minor groove binder: Hoechst 33258 in restricted environments , 2006 .

[24]  Galen Collier,et al.  Performance of cryogenic probes as a function of ionic strength and sample tube geometry. , 2006, Journal of magnetic resonance.

[25]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[26]  J. Chou,et al.  The structure of phospholamban pentamer reveals a channel-like architecture in membranes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  C. Sanders,et al.  Phenotology of disease‐linked proteins , 2005, Human mutation.

[28]  S. Opella,et al.  Weak alignment of membrane proteins in stressed polyacrylamide gels. , 2004, Journal of magnetic resonance.

[29]  G. Hummer,et al.  Prediction of charge-induced molecular alignment of biomolecules dissolved in dilute liquid-crystalline phases. , 2004, Biophysical journal.

[30]  R. Withers,et al.  Low-conductivity buffers for high-sensitivity NMR measurements. , 2002, Journal of the American Chemical Society.

[31]  A. Hopkins,et al.  Protein kinase drugs--optimism doesn't wait on facts. , 2002, Drug Discovery Today.

[32]  A. Bax,et al.  Micelle-induced curvature in a water-insoluble HIV-1 Env peptide revealed by NMR dipolar coupling measurement in stretched polyacrylamide gel. , 2002, Journal of the American Chemical Society.

[33]  A. Bax,et al.  A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles* , 2001, Journal of biomolecular NMR.

[34]  A. Bax,et al.  Characterization of molecular alignment in aqueous suspensions of Pf1 bacteriophage , 2001, Journal of biomolecular NMR.

[35]  A. Bax,et al.  Dipolar couplings in macromolecular structure determination. , 2001, Methods in enzymology.

[36]  Y. Ishii,et al.  Alignment of Biopolymers in Strained Gels: A New Way To Create Detectable Dipole−Dipole Couplings in High-Resolution Biomolecular NMR , 2000 .

[37]  Gottfried Otting,et al.  Alignment of Biological Macromolecules in Novel Nonionic Liquid Crystalline Media for NMR Experiments , 2000 .

[38]  S. Matthews,et al.  Cellulose Crystallites: A New and Robust Liquid Crystalline Medium for the Measurement of Residual Dipolar Couplings , 2000 .

[39]  A. Wand,et al.  Optimal Use of Cryogenic Probe Technology in NMR Studies of Proteins , 2000 .

[40]  Ad Bax,et al.  Prediction of Sterically Induced Alignment in a Dilute Liquid Crystalline Phase: Aid to Protein Structure Determination by NMR , 2000 .

[41]  L. Mueller,et al.  Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions , 1998, Nature Structural Biology.

[42]  R. Prosser,et al.  USE OF A NOVEL AQUEOUS LIQUID CRYSTALLINE MEDIUM FOR HIGH-RESOLUTION NMR OF MACROMOLECULES IN SOLUTION , 1998 .

[43]  J. Prestegard,et al.  New techniques in structural NMR — anisotropic interactions , 1998, Nature Structural Biology.

[44]  Ad Bax,et al.  Validation of Protein Structure from Anisotropic Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase , 1998 .

[45]  D. Marvin,et al.  Filamentous phage structure, infection and assembly. , 1998, Current opinion in structural biology.

[46]  G. Heijne,et al.  Genome‐wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms , 1998, Protein science : a publication of the Protein Society.

[47]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  A. Bax,et al.  Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. , 1997, Science.

[49]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[50]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[51]  J H Prestegard,et al.  Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[52]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.