Deep Neural Networks to Enable Real-time Multimessenger Astrophysics

Gravitational wave astronomy has set in motion a scientific revolution. To further enhance the science reach of this emergent field, there is a pressing need to increase the depth and speed of the gravitational wave algorithms that have enabled these groundbreaking discoveries. To contribute to this effort, we introduce Deep Filtering, a new highly scalable method for end-to-end time-series signal processing, based on a system of two deep convolutional neural networks, which we designed for classification and regression to rapidly detect and estimate parameters of signals in highly noisy time-series data streams. We demonstrate a novel training scheme with gradually increasing noise levels, and a transfer learning procedure between the two networks. We showcase the application of this method for the detection and parameter estimation of gravitational waves from binary black hole mergers. Our results indicate that Deep Filtering significantly outperforms conventional machine learning techniques, achieves similar performance compared to matched-filtering while being several orders of magnitude faster thus allowing real-time processing of raw big data with minimal resources. More importantly, Deep Filtering extends the range of gravitational wave signals that can be detected with ground-based gravitational wave detectors. This framework leverages recent advances in artificial intelligence algorithms and emerging hardware architectures, such as deep-learning-optimized GPUs, to facilitate real-time searches of gravitational wave sources and their electromagnetic and astro-particle counterparts.

[1]  Antonio Marquina,et al.  Denoising of gravitational wave signals via dictionary learning algorithms , 2016, 1612.01305.

[2]  Daniel George,et al.  Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with Advanced LIGO Data , 2017, ArXiv.

[3]  Roberto Scaramella,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living reviews in relativity.

[4]  David N. Spergel,et al.  Wide-Field InfraRed Survey Telescope (WFIRST) Mission and Synergies with LISA and LIGO-Virgo , 2014, 1411.0313.

[5]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[6]  L. Rezzolla,et al.  Classical and Quantum Gravity , 2002 .

[7]  Cody Messick,et al.  Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.

[8]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[9]  Michael Boyle,et al.  On the accuracy and precision of numerical waveforms: effect of waveform extraction methodology , 2015, 1512.06800.

[10]  Michael Boyle,et al.  Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors , 2016, 1611.03703.

[11]  B. Owen,et al.  Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.

[12]  Song Han,et al.  EIE: Efficient Inference Engine on Compressed Deep Neural Network , 2016, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).

[13]  Caltech,et al.  Measuring the angular momentum distribution in core-collapse supernova progenitors with gravitational waves , 2013, 1311.3678.

[14]  B. Paczyński Gamma-ray bursters at cosmological distances , 1986 .

[15]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017 .

[16]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[17]  Tsvi Piran,et al.  Gravitational Waves and gamma -Ray Bursts , 1993 .

[18]  Roland Haas,et al.  Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers , 2017, 1711.06276.

[19]  Edwin A. Valentijn,et al.  Survey and other telescope technologies and discoveries , 2002 .

[20]  J. Gair,et al.  Novel method for incorporating model uncertainties into gravitational wave parameter estimates. , 2014, Physical review letters.

[21]  Michael Boyle,et al.  Effective-one-body model for black-hole binaries with generic mass ratios and spins , 2013, Physical Review D.

[22]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[23]  Klaus-Robert Müller,et al.  Efficient BackProp , 2012, Neural Networks: Tricks of the Trade.

[24]  Y. Wang,et al.  High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube , 2016, 1602.05411.

[25]  S. Grossberg,et al.  Psychological Review , 2003 .

[26]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  John T. Whelan,et al.  Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data , 2013, 1310.5633.

[29]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[30]  October I Physical Review Letters , 2022 .

[31]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[32]  R. Bonnand,et al.  Observing gravitational-wave transient GW150914 with minimal assumptions , 2016 .

[33]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[34]  Richard O'Shaughnessy,et al.  Accurate and efficient waveforms for compact binaries on eccentric orbits , 2014, 1408.3406.

[35]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[36]  日本物理学会,et al.  Progress in Theoretical Physics , 1946, Nature.

[37]  Roland Haas,et al.  Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code , 2016, 1604.00782.

[38]  A. Nitz,et al.  Distinguishing short duration noise transients in LIGO data to improve the PyCBC search for gravitational waves from high mass binary black hole mergers , 2017, 1709.08974.

[39]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[40]  Li-Rong Dai,et al.  A Regression Approach to Speech Enhancement Based on Deep Neural Networks , 2015, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[41]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[42]  J. Powell,et al.  Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data , 2016, 1609.06262.

[43]  Yann LeCun,et al.  What is the best multi-stage architecture for object recognition? , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[44]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[45]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[46]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[47]  Yi Zheng,et al.  Time Series Classification Using Multi-Channels Deep Convolutional Neural Networks , 2014, WAIM.

[48]  S. Privitera,et al.  Searching for Gravitational Waves from Compact Binaries with Precessing Spins , 2016, 1603.02444.

[49]  Charu C. Aggarwal,et al.  Neural Networks and Deep Learning , 2018, Springer International Publishing.

[50]  Daniel Graupe,et al.  Principles of Artificial Neural Networks , 2018, Advanced Series in Circuits and Systems.

[51]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[52]  Michael Boyle,et al.  Catalog of 174 binary black hole simulations for gravitational wave astronomy. , 2013, Physical review letters.

[53]  GPU-Based Deep Learning Inference: A Performance and Power Analysis , 2015 .

[54]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[55]  Mansi Kasliwal,et al.  IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION , 2012, 1210.6362.

[56]  Erik Schnetter,et al.  SpECTRE: A task-based discontinuous Galerkin code for relativistic astrophysics , 2016, J. Comput. Phys..

[57]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[58]  R. Lynch,et al.  Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data , 2015, 1505.01299.

[59]  Klaus-Robert Müller,et al.  Neural Networks: Tricks of the Trade, this book is an outgrowth of a 1996 NIPS workshop , 1998, NIPS 1998.

[60]  Erik Schnetter,et al.  GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit , 2013, 1304.5544.

[61]  H. Kalmus Biological Cybernetics , 1972, Nature.

[62]  Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays , 2015, FPGA.

[63]  Eduardo F. Morales,et al.  An Introduction to Reinforcement Learning , 2011 .

[64]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[65]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[66]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[67]  Marco Drago,et al.  Proposed search for the detection of gravitational waves from eccentric binary black holes , 2015, 1511.09240.

[68]  Richard O'Shaughnessy,et al.  COMPACT BINARY MERGER RATES: COMPARISON WITH LIGO/VIRGO UPPER LIMITS , 2015, 1510.04615.

[69]  Y. Wang,et al.  Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence , 2016, 1606.01262.

[70]  Lawrence E. Kidder,et al.  Complete waveform model for compact binaries on eccentric orbits , 2016, 1609.05933.

[71]  Jonathan R. Gair,et al.  Improving gravitational-wave parameter estimation using Gaussian process regression , 2015, 1509.04066.

[72]  P. Dall'Aglio The Journal of High Energy Physics , 2012 .

[73]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[74]  Alberto J. Castro-Tirado,et al.  Multi-messenger Observations of a Binary Neutron Star , 2017 .

[75]  Philip S. Yu,et al.  2014 IEEE International Conference on Data Mining , 2014 .

[76]  Jeffrey K. Hollingsworth Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis , 2017, SC.

[77]  Carla E. Brodley,et al.  Proceedings of the twenty-first international conference on Machine learning , 2004, International Conference on Machine Learning.

[78]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[79]  Philip Graff,et al.  THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO , 2014, 1404.5623.

[80]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[81]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[82]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[83]  Michael Purrer,et al.  Fast and accurate inference on gravitational waves from precessing compact binaries , 2016, 1604.08253.

[84]  T. Charles Clancy,et al.  Convolutional Radio Modulation Recognition Networks , 2016, EANN.

[85]  Vicky Kalogera,et al.  SYSTEMATIC ERRORS IN LOW-LATENCY GRAVITATIONAL WAVE PARAMETER ESTIMATION IMPACT ELECTROMAGNETIC FOLLOW-UP OBSERVATIONS , 2016, 1601.02661.

[86]  Daniel Graupe,et al.  Principles of Artificial Neural Networks - 3rd Edition , 2013, Advanced Series in Circuits and Systems.

[87]  Michael Pürrer,et al.  Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass-ratios and spins , 2016 .

[88]  N. S. Philip,et al.  Transient Classification in LIGO data using Difference Boosting Neural Network , 2016, 1609.07259.

[89]  Laurence Perreault Levasseur,et al.  Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing , 2017, 1708.08843.

[90]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[91]  Stephen R. Taylor,et al.  Detection of eccentric supermassive black hole binaries with pulsar timing arrays: Signal-to-noise ratio calculations , 2015, 1504.00928.

[92]  A. Katsaggelos,et al.  Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science , 2016, Classical and quantum gravity.

[93]  D Huet,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. , 2016, Physical review letters.

[94]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[95]  Robert P. Johnson,et al.  THE SECOND FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS , 2013 .

[96]  E. A. Huerta,et al.  Effect of eccentricity on binary neutron star searches in advanced LIGO , 2013, 1301.1895.

[97]  Bruce Allen,et al.  Exploiting large-scale correlations to detect continuous gravitational waves. , 2009, Physical review letters.

[98]  Zoubin Ghahramani,et al.  Proceedings of the 24th international conference on Machine learning , 2007, ICML 2007.

[99]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[100]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[101]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[102]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[103]  Pablo A. Estévez,et al.  Deep-HiTS: Rotation Invariant Convolutional Neural Network for Transient Detection , 2017, ArXiv.

[104]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[105]  D. Signorini,et al.  Neural networks , 1995, The Lancet.