A symmetry on weakly increasing trees and multiset Schett polynomials

By considering the parity of the degrees and levels of nodes in increasing trees, a new combinatorial interpretation for the coefficients of the Taylor expansions of the Jacobi elliptic functions is found. As one application of this new interpretation, a conjecture of Ma–Mansour–Wang–Yeh is solved. Unifying the concepts of increasing trees and plane trees, Lin–Ma–Ma–Zhou introduced weakly increasing trees on a multiset. A symmetry joint distribution of “even-degree nodes on odd levels” and “odd-degree nodes” on weakly increasing trees is found, extending the Jacobi elliptic functions to multisets. A combinatorial proof and an algebraic proof of this symmetry are provided, as well as several relevant interesting consequences.

[1]  Shao-Hua Liu An involution on increasing trees , 2019, Discret. Math..

[2]  Philippe Flajolet,et al.  Elliptic Functions, Continued Fractions and Doubled Permutations , 1989, Eur. J. Comb..

[3]  Emeric Deutsch,et al.  A survey of the Fine numbers , 2001, Discret. Math..

[4]  Nachum Dershowitz,et al.  Enumerations of ordered trees , 1980, Discret. Math..

[5]  Yeong-Nan Yeh,et al.  Γ-positivity and Partial Γ-positivity of Descent-type Polynomials , 2019, J. Comb. Theory, Ser. A.

[6]  Jiang Zeng,et al.  The γ-positivity of basic Eulerian polynomials via group actions , 2015, J. Comb. Theory A.

[7]  John Riordan,et al.  Enumeration of Plane Trees by Branches and Endpoints , 1975, J. Comb. Theory, Ser. A.

[8]  P. Stevenhagen,et al.  ELLIPTIC FUNCTIONS , 2022 .

[9]  W Y Chen,et al.  A general bijective algorithm for trees. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Dumont,et al.  A Combinatorial Interpretation for the Schett Recurrence on the Jacobian Elliptic Functions , 1979 .

[11]  Ira M. Gessel,et al.  A combinatorial proof of the multivariable lagrange inversion formula , 1987, J. Comb. Theory, Ser. A.

[12]  Doron Zeilberger,et al.  A Classic Proof of a Recurrence for a Very Classical Sequence , 1997, J. Comb. Theory, Ser. A.

[13]  D. Foata,et al.  André Permutation Calculus: a Twin Seidel Matrix Sequence , 2016, 1601.04371.

[14]  A. Kuznetsov,et al.  Increasing trees and alternating permutations , 1994 .

[15]  William Y. C. Chen,et al.  Context-Free Grammars, Differential Operators and Formal Power Series , 1993, Theor. Comput. Sci..

[16]  Emeric Deutsch,et al.  A Bijection on Ordered Trees and Its Consequences , 2000, J. Comb. Theory, Ser. A.

[17]  Marc Noy,et al.  Diagonally convex directed polyominoes and even trees: a bijection and related issues , 2002, Discret. Math..

[18]  Shi-Mei Ma,et al.  Weakly increasing trees on a multiset , 2021, Adv. Appl. Math..

[19]  Philip B. Zhang,et al.  Statistics on multipermutations and partial γ-positivity , 2021, J. Comb. Theory, Ser. A.

[20]  Petter Brändén,et al.  Actions on permutations and unimodality of descent polynomials , 2008, Eur. J. Comb..

[21]  On the γ-positivity of multiset Eulerian polynomials , 2022, European Journal of Combinatorics.

[22]  David G. L. Wang,et al.  Several variants of the Dumont differential system and permutation statistics , 2014, Science China Mathematics.

[23]  Yeong-Nan Yeh,et al.  Jacobian elliptic functions and a family of bivariate peak polynomials , 2021, Eur. J. Comb..

[24]  D. Dumont William Chen grammars and derivations in trees and arborescences. (Grammaires de William Chen et dérivations dans les arbres et arborescences.) , 1996 .

[25]  Christos A. Athanasiadis Gamma-positivity in combinatorics and geometry , 2017, 1711.05983.

[26]  Philippe Flajolet,et al.  Varieties of Increasing Trees , 1992, CAAP.

[27]  Shu-Chung Liu,et al.  Odd or even on plane trees , 2004, Discret. Math..

[28]  A. Schett,et al.  Properties of the Taylor series expansion coefficients of the Jacobian elliptic functions , 1976 .

[29]  Amy M. Fu,et al.  Context-free grammars for permutations and increasing trees , 2017, Adv. Appl. Math..

[30]  Nachum Dershowitz,et al.  Applied Tree Enumerations , 1981, CAAP.

[31]  Dominique Dumont,et al.  Une approche combinatoire des fonctions elliptiques de Jacobi , 1981 .

[32]  Song Y. Yan,et al.  Context Free Grammars , 2011 .