A symmetry on weakly increasing trees and multiset Schett polynomials
暂无分享,去创建一个
[1] Shao-Hua Liu. An involution on increasing trees , 2019, Discret. Math..
[2] Philippe Flajolet,et al. Elliptic Functions, Continued Fractions and Doubled Permutations , 1989, Eur. J. Comb..
[3] Emeric Deutsch,et al. A survey of the Fine numbers , 2001, Discret. Math..
[4] Nachum Dershowitz,et al. Enumerations of ordered trees , 1980, Discret. Math..
[5] Yeong-Nan Yeh,et al. Γ-positivity and Partial Γ-positivity of Descent-type Polynomials , 2019, J. Comb. Theory, Ser. A.
[6] Jiang Zeng,et al. The γ-positivity of basic Eulerian polynomials via group actions , 2015, J. Comb. Theory A.
[7] John Riordan,et al. Enumeration of Plane Trees by Branches and Endpoints , 1975, J. Comb. Theory, Ser. A.
[8] P. Stevenhagen,et al. ELLIPTIC FUNCTIONS , 2022 .
[9] W Y Chen,et al. A general bijective algorithm for trees. , 1990, Proceedings of the National Academy of Sciences of the United States of America.
[10] D. Dumont,et al. A Combinatorial Interpretation for the Schett Recurrence on the Jacobian Elliptic Functions , 1979 .
[11] Ira M. Gessel,et al. A combinatorial proof of the multivariable lagrange inversion formula , 1987, J. Comb. Theory, Ser. A.
[12] Doron Zeilberger,et al. A Classic Proof of a Recurrence for a Very Classical Sequence , 1997, J. Comb. Theory, Ser. A.
[13] D. Foata,et al. André Permutation Calculus: a Twin Seidel Matrix Sequence , 2016, 1601.04371.
[14] A. Kuznetsov,et al. Increasing trees and alternating permutations , 1994 .
[15] William Y. C. Chen,et al. Context-Free Grammars, Differential Operators and Formal Power Series , 1993, Theor. Comput. Sci..
[16] Emeric Deutsch,et al. A Bijection on Ordered Trees and Its Consequences , 2000, J. Comb. Theory, Ser. A.
[17] Marc Noy,et al. Diagonally convex directed polyominoes and even trees: a bijection and related issues , 2002, Discret. Math..
[18] Shi-Mei Ma,et al. Weakly increasing trees on a multiset , 2021, Adv. Appl. Math..
[19] Philip B. Zhang,et al. Statistics on multipermutations and partial γ-positivity , 2021, J. Comb. Theory, Ser. A.
[20] Petter Brändén,et al. Actions on permutations and unimodality of descent polynomials , 2008, Eur. J. Comb..
[21] On the γ-positivity of multiset Eulerian polynomials , 2022, European Journal of Combinatorics.
[22] David G. L. Wang,et al. Several variants of the Dumont differential system and permutation statistics , 2014, Science China Mathematics.
[23] Yeong-Nan Yeh,et al. Jacobian elliptic functions and a family of bivariate peak polynomials , 2021, Eur. J. Comb..
[24] D. Dumont. William Chen grammars and derivations in trees and arborescences. (Grammaires de William Chen et dérivations dans les arbres et arborescences.) , 1996 .
[25] Christos A. Athanasiadis. Gamma-positivity in combinatorics and geometry , 2017, 1711.05983.
[26] Philippe Flajolet,et al. Varieties of Increasing Trees , 1992, CAAP.
[27] Shu-Chung Liu,et al. Odd or even on plane trees , 2004, Discret. Math..
[28] A. Schett,et al. Properties of the Taylor series expansion coefficients of the Jacobian elliptic functions , 1976 .
[29] Amy M. Fu,et al. Context-free grammars for permutations and increasing trees , 2017, Adv. Appl. Math..
[30] Nachum Dershowitz,et al. Applied Tree Enumerations , 1981, CAAP.
[31] Dominique Dumont,et al. Une approche combinatoire des fonctions elliptiques de Jacobi , 1981 .
[32] Song Y. Yan,et al. Context Free Grammars , 2011 .