Creating Top Ranking Options in the Continuous Option and Preference Space

Top-k queries are extensively used to retrieve the k most relevant options (e.g., products, services, accommodation alternatives, etc) based on a weighted scoring function that captures user preferences. In this paper, we take the viewpoint of a business owner who plans to introduce a new option to the market, with a certain type of clientele in mind. Given a target region in the consumer spectrum, we determine what attribute values the new option should have, so that it ranks among the top-k for any user in that region. Our methodology can also be used to improve an existing option, at the minimum modification cost, so that it ranks consistently high for an intended type of customers. This is the first work on competitive option placement where no distinct user(s) are targeted, but a general clientele type, i.e., a continuum of possible preferences. Here also lies our main challenge (and contribution), i.e., dealing with the interplay between two continuous spaces: the targeted region in the preference spectrum, and the option domain (where the new option will be placed). At the core of our methodology lies a novel and powerful interlinking between the two spaces. Our algorithms offer exact answers in practical response times, even for the largest of the standard benchmark datasets. PVLDB Reference Format: Bo Tang, Kyriakos Mouratidis, Man Lung Yiu and Zhenyu Chen. Creating Top Ranking Options in the Continuous Option and Preference Space. PVLDB, 12(10): 1181-1194, 2019. DOI: https://doi.org/110.14778/3339490.3339500

[1]  Eamonn J. Keogh Nearest Neighbor , 2010, Encyclopedia of Machine Learning.

[2]  Gang Chen,et al.  Answering why-not and why questions on reverse top-k queries , 2016, The VLDB Journal.

[3]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[4]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[5]  Davide Martinenghi,et al.  Ranking with uncertain scoring functions: semantics and sensitivity measures , 2011, SIGMOD '11.

[6]  Pankaj K. Agarwal,et al.  Top-k preferences in high dimensions , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[7]  Micha Sharir,et al.  On levels in arrangements of lines, segments, planes, and triangles , 1997, SCG '97.

[8]  R. C. Monteiro,et al.  Interior path following primal-dual algorithms , 1988 .

[9]  Hua Lu,et al.  Upgrading Uncompetitive Products Economically , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[10]  Vagelis Hristidis,et al.  PREFER: a system for the efficient execution of multi-parametric ranked queries , 2001, SIGMOD '01.

[11]  Katherine N. Lemon,et al.  The Customer Pyramid: Creating and Serving Profitable Customers , 2001 .

[12]  Kyriakos Mouratidis,et al.  Maximum Rank Query , 2015, Proc. VLDB Endow..

[13]  Parke Godfrey,et al.  Skyline Cardinality for Relational Processing , 2004, FoIKS.

[14]  Zhao Zhang,et al.  Reverse k-Ranks Query , 2014, Proc. VLDB Endow..

[15]  Robert Simons Choosing The Right Customer , 2014 .

[16]  Ihab F. Ilyas,et al.  A survey of top-k query processing techniques in relational database systems , 2008, CSUR.

[17]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[18]  Raymond Chi-Wing Wong,et al.  Finding Top-k Preferable Products , 2012, IEEE Transactions on Knowledge and Data Engineering.

[19]  Kyriakos Mouratidis,et al.  Determining the Impact Regions of Competing Options in Preference Space , 2017, SIGMOD Conference.

[20]  Timothy M. Chan,et al.  On levels in arrangements of lines , 1998 .

[21]  Heikki Mannila,et al.  Determining Attributes to Maximize Visibility of Objects , 2009, IEEE Transactions on Knowledge and Data Engineering.

[22]  Kyriakos Mouratidis,et al.  Global immutable region computation , 2014, SIGMOD Conference.

[23]  Eric Lo,et al.  Answering Why-Not Questions on Top-K Queries , 2012, IEEE Transactions on Knowledge and Data Engineering.

[24]  John R. Smith,et al.  The onion technique: indexing for linear optimization queries , 2000, SIGMOD '00.

[25]  Raymond Chi-Wing Wong,et al.  Creating Competitive Products , 2009, Proc. VLDB Endow..

[26]  Richard J. Lipton,et al.  Regret-minimizing representative databases , 2010, Proc. VLDB Endow..

[27]  Xuemin Lin,et al.  Influence based cost optimization on user preference , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[28]  Yufei Tao,et al.  Branch-and-bound processing of ranked queries , 2007, Inf. Syst..

[29]  K. Srinivasan,et al.  New Products, Upgrades, and New Releases: A Rationale for Sequential Product Introduction , 1997 .

[30]  Dimitrios Gunopulos,et al.  Ad-hoc Top-k Query Answering for Data Streams , 2007, VLDB.

[31]  New products , 1940, Electrical Engineering.

[32]  Jacob Viner,et al.  Cost curves and supply curves , 1932 .

[33]  Christos Doulkeridis,et al.  Identifying the most influential data objects with reverse top-k queries , 2010, Proc. VLDB Endow..

[34]  Bernhard Seeger,et al.  Progressive skyline computation in database systems , 2005, TODS.

[35]  Anthony K. H. Tung,et al.  DADA: a data cube for dominant relationship analysis , 2006, SIGMOD Conference.

[36]  Davide Martinenghi,et al.  Reconciling Skyline and Ranking Queries , 2017, Proc. VLDB Endow..

[37]  Li Qian,et al.  Learning User Preferences By Adaptive Pairwise Comparison , 2015, Proc. VLDB Endow..

[38]  Nikos Mamoulis,et al.  Efficient All Top-k Computation - A Unified Solution for All Top-k, Reverse Top-k and Top-m Influential Queries , 2013, IEEE Transactions on Knowledge and Data Engineering.

[39]  R. Tyrrell Rockafellar,et al.  Lagrange Multipliers and Optimality , 1993, SIAM Rev..

[40]  Yin Yang,et al.  Kernel-based skyline cardinality estimation , 2009, SIGMOD Conference.

[41]  Christos Doulkeridis,et al.  Branch-and-bound algorithm for reverse top-k queries , 2013, SIGMOD '13.

[42]  Nick Koudas,et al.  Assisting Service Providers In Peer-to-peer Marketplaces: Maximizing Gain Over Flexible Attributes , 2017, ArXiv.

[43]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[44]  Raymond Chi-Wing Wong,et al.  k-Hit Query: Top-k Query with Probabilistic Utility Function , 2015, SIGMOD Conference.

[45]  Christos Doulkeridis,et al.  Monochromatic and Bichromatic Reverse Top-k Queries , 2011, IEEE Transactions on Knowledge and Data Engineering.

[46]  Ying Cai,et al.  Querying Improvement Strategies , 2017, EDBT.

[47]  Alex Thomo,et al.  Computing k-Regret Minimizing Sets , 2014, Proc. VLDB Endow..

[48]  Moni Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS '01.

[49]  Vagelis Hristidis,et al.  Leveraging collaborative tagging for web item design , 2011, KDD.

[50]  Abolfazl Asudeh,et al.  Efficient Computation of Regret-ratio Minimizing Set: A Compact Maxima Representative , 2017, SIGMOD Conference.

[51]  Pankaj K. Agarwal,et al.  Processing a large number of continuous preference top-k queries , 2012, SIGMOD Conference.

[52]  Nikos Mamoulis,et al.  Under Consideration for Publication in Knowledge and Information Systems Dominance Relationship Analysis with Budget Constraints , 2022 .

[53]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[54]  Cheng Long,et al.  Efficient k-Regret Query Algorithm with Restriction-free Bound for any Dimensionality , 2018, SIGMOD Conference.

[55]  Kyriakos Mouratidis,et al.  Exact Processing of Uncertain Top-k Queries in Multi-criteria Settings , 2018, Proc. VLDB Endow..