Grain refining effect of calcium dopants on gas-sensing properties of electrospun α-Fe2O3 nanotubes

Here we report a type of electrospun alpha-Fe2O3 nanotubes doped with different mole percentage of calcium (Ca) elements and the grain refining effect of Ca on the properties of the obtained samples. Results show that the microstructures and morphologies of the as-prepared alpha-Fe2O3 nanotubes are significantly affected by doping contents (1-15 mol%). With increasing Ca doping content, the grain size of alpha-Fe2O3 nanotubes decreases monotonously (named "grain refining effect"). This is due to the low calcination temperature and a large mismatch between the radii of Ca2+ and Fe3+ ions. Moreover, gas-sensing tests show that the Ca-doped alpha-Fe2O3 nanotube based sensors exhibit enhanced gas-sensing properties toward both ethanol and acetone. At an optimal operating temperature of 200 degrees C, 7 mol% Ca-doped sensors present the highest response value to ethanol (26.8/100 ppm) and acetone (24.9/100 ppm) with a fast response/recovery rate. Furthermore, a possible gas-sensing mechanism is proposed, which suggests the grain refining effect of Ca dopants plays a dominant role in improving the sensing performances of alpha-Fe2O3 nanotubes. (C) 2016 Elsevier B.V. All rights reserved.

[1]  Cell K. Y. Wong,et al.  Nanowire-based gas sensors , 2013 .

[2]  Teng Fei,et al.  Synthesis of core–shell α-Fe2O3@NiO nanofibers with hollow structures and their enhanced HCHO sensing properties , 2015 .

[3]  Xiaobo Zhang,et al.  Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes. , 2013, ACS applied materials & interfaces.

[4]  Zhen Jin,et al.  Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review , 2012, Sensors.

[5]  Francesca Peiró,et al.  A Novel Mesoporous CaO‐Loaded In2O3 Material for CO2 Sensing , 2007 .

[6]  G. Lu,et al.  Synthesis and gas sensing properties of bundle-like α-Fe2O3 nanorods , 2011 .

[7]  Li Liu,et al.  Al2O3-doped for enhancing ethanol sensing properties of α-Fe2O3 nanotubes , 2015 .

[8]  Xiu-juan Xu,et al.  Fabrication of N-type Fe2O3 and P-type LaFeO3 nanobelts by electrospinning and determination of gas-sensing properties , 2011 .

[9]  Guozhong Cao,et al.  Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries , 2011 .

[10]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .

[11]  Guozhi Zhang,et al.  Electrospun In2O3/α-Fe2O3 heterostructure nanotubes for highly sensitive gas sensor applications , 2013 .

[12]  P. Heitjans,et al.  A rapid one-step mechanosynthesis and characterization of nanocrystalline CaFe2O4 with orthorhombic structure , 2010 .

[13]  G. Lu,et al.  Novel cage-like α-Fe2O3/SnO2 composite nanofibers by electrospinning for rapid gas sensing properties , 2014 .

[14]  K. Gross,et al.  Spinel ferrite oxide semiconductor gas sensors , 2016 .

[15]  A. Khoury,et al.  Iron-based 1D nanostructures by electrospinning process , 2010, Nanotechnology.

[16]  J. Greneche,et al.  New evidences of in situ laser irradiation effects on γ-Fe2O3 nanoparticles: a Raman spectroscopic study , 2011 .

[17]  Rui Wang,et al.  Core–shell Co3O4/α-Fe2O3 heterostructure nanofibers with enhanced gas sensing properties , 2015 .

[18]  Sagrario Martínez-Ramírez,et al.  MICRO-RAMAN SPECTROSCOPY APPLIED TO DEPTH PROFILES OF CARBONATES FORMED IN LIME MORTAR , 2003 .

[19]  Ce Wang,et al.  Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties , 2009 .

[20]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[21]  Xizhi Fan,et al.  Formation mechanism of Fe2O3 hollow fibers by direct annealing of the electrospun composite fibers and their magnetic, electrochemical properties , 2011 .

[22]  Shuang Yan,et al.  An ultrahigh-sensitivity and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofibers , 2015, Nano Research.

[23]  Xuan He,et al.  Catalytic oxidation of 1,2-dichlorobenzene over CaCO3/α-Fe2O3 nanocomposite catalysts , 2013 .

[24]  Michael Tiemann,et al.  Porous metal oxides as gas sensors. , 2007, Chemistry.

[25]  Giorgio Sberveglieri,et al.  Pd- and Ca-doped iron oxide for ethanol vapor sensing , 2007 .

[26]  Il-Doo Kim,et al.  Nanostructured metal oxide gas sensors prepared by electrospinning , 2011 .

[27]  C. Gabrielli,et al.  Study of the Electrochemical Deposition of CaCO3 by In Situ Raman Spectroscopy I. Influence of the Substrate , 2003 .

[28]  Xiaobo Zhang,et al.  Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes , 2013 .

[29]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[30]  C. Wen,et al.  Mg-Zr-Sr alloys as biodegradable implant materials. , 2012, Acta biomaterialia.

[31]  Li Liu,et al.  Excellent acetone sensing properties of Sm-doped α-Fe2O3 , 2014 .

[32]  Bing Sun,et al.  Synthesis of Mesoporous α-Fe2O3 Nanostructures for Highly Sensitive Gas Sensors and High Capacity Anode Materials in Lithium Ion Batteries , 2010 .

[33]  Changhui Zhao,et al.  Effects of SnO2 additives on nanostructure and gas-sensing properties of α-Fe2O3 nanotubes , 2014 .

[34]  Chaobin He,et al.  Effects of Ca on grain boundary cohesion in Au ballbonding wire , 2006 .

[35]  L. S. Birks,et al.  Particle Size Determination from X‐Ray Line Broadening , 1946 .

[36]  Andris Šutka,et al.  Orthorhombic CaFe2O4: A promising p-type gas sensor , 2016 .