Some perspectives on nonparametric statistical process control

ABSTRACT Statistical process control (SPC) charts play a central role in quality control and management. Many conventional SPC charts are designed under the assumption that the related process distribution is normal. In practice, the normality assumption is often invalid. In such cases, some articles show that certain conventional SPC charts are robust and can still be used as long as their parameters are properly chosen. Some other articles argue that results from such conventional SPC charts would not be reliable and that nonparametric SPC charts should be considered instead. In recent years, many nonparametric SPC charts have been proposed. Most of them are based on the ranking information in process observations collected at different time points. Some of them are based on data categorization and categorical data analysis. In this article, we give some perspectives on issues related to the robustness of conventional SPC charts and to the strengths and limitations of various nonparametric SPC charts.

[1]  Johannes Ledolter,et al.  A new nonparametric quality control technique , 1992 .

[2]  M. R. Reynolds,et al.  A general approach to modeling CUSUM charts for a proportion , 2000 .

[3]  S. Chakraborti,et al.  Nonparametric Control Charts: An Overview and Some Results , 2001 .

[4]  Giovanna Capizzi,et al.  Phase I Distribution-Free Analysis of Multivariate Data , 2013, Technometrics.

[5]  Liu Liu,et al.  Adaptive nonparametric CUSUM scheme for detecting unknown shifts in location , 2014 .

[6]  Subhabrata Chakraborti,et al.  Robustness of the EWMA control chart for individual observations , 2011 .

[7]  S. W. Roberts Control chart tests based on geometric moving averages , 2000 .

[8]  Regina Y. Liu Control Charts for Multivariate Processes , 1995 .

[9]  Y. Ritov Decision Theoretic Optimality of the Cusum Procedure , 1990 .

[10]  Peihua Qiu,et al.  On Phase II SPC in Cases When Normality is Invalid , 2015, Qual. Reliab. Eng. Int..

[11]  W. Woodall,et al.  On Nonparametric Multivariate Control Charts Based on Data Depth , 2001 .

[12]  Jun Li,et al.  Nonparametric multivariate CUSUM control charts for location and scale changes , 2013 .

[13]  Stefan H. Steiner,et al.  Monitoring Processes with Highly Censored Data , 2000 .

[14]  M. R. Reynolds,et al.  Nonparametric quality control charts based on the sign statistic , 1995 .

[15]  A. R. Crathorne,et al.  Economic Control of Quality of Manufactured Product. , 1933 .

[16]  Fugee Tsung,et al.  Likelihood Ratio-Based Distribution-Free EWMA Control Charts , 2010 .

[17]  David E. Tyler A Distribution-Free $M$-Estimator of Multivariate Scatter , 1987 .

[18]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[19]  Douglas M. Hawkins,et al.  The Changepoint Model for Statistical Process Control , 2003 .

[20]  Elisabeth J. Umble,et al.  Cumulative Sum Charts and Charting for Quality Improvement , 2001, Technometrics.

[21]  Peihua Qiu,et al.  Distribution-free monitoring of univariate processes , 2011 .

[22]  Snigdhansu Chatterjee,et al.  Distribution-free cumulative sum control charts using bootstrap-based control limits , 2009, 0906.1421.

[23]  G. Moustakides Optimal stopping times for detecting changes in distributions , 1986 .

[24]  Fugee Tsung,et al.  A spatial rank‐based multivariate EWMA control chart , 2012 .

[25]  William H. Woodall,et al.  The Performance of Bootstrap Control Charts , 1998 .

[26]  Peihua Qiu,et al.  Statistical monitoring of the hand, foot and mouth disease in China , 2015, Biometrics.

[27]  Seoung Bum Kim,et al.  Bootstrap-Based T 2 Multivariate Control Charts , 2011, Commun. Stat. Simul. Comput..

[28]  Charles W. Champ,et al.  Exact results for shewhart control charts with supplementary runs rules , 1987 .

[29]  Jyh-Jen Horng Shiau,et al.  Robustness of the EWMA Control Chart to Non-normality for Autocorrelated Processes , 2005 .

[30]  Peihua Qiu,et al.  Statistical Process Control Charts as a Tool for Analyzing Big Data , 2017 .

[31]  H. Oja Multivariate Nonparametric Methods with R , 2010 .

[32]  Nan Chen,et al.  A Distribution-Free Multivariate Control Chart , 2016, Technometrics.

[33]  Subha Chakraborti,et al.  A nonparametric exponentially weighted moving average signed-rank chart for monitoring location , 2011, Comput. Stat. Data Anal..

[34]  Zhonghua Li,et al.  Multivariate Change Point Control Chart Based on Data Depth for Phase I Analysis , 2014, Commun. Stat. Simul. Comput..

[35]  Douglas M. Hawkins,et al.  A Control Chart Based on A Nonparametric Multivariate Change-Point Model , 2014 .

[36]  Regina Y. Liu,et al.  A Quality Index Based on Data Depth and Multivariate Rank Tests , 1993 .

[37]  Giovanna Capizzi,et al.  Phase I Distribution-Free Analysis of Univariate Data , 2013 .

[38]  Connie M. Borror,et al.  Robustness properties of multivariate EWMA control charts , 2003 .

[39]  M. R. Reynolds,et al.  Nonparametric procedures for monitoring a location parameter based on linear placement statistics , 1987 .

[40]  Arthur B. Yeh,et al.  A Nonparametric Phase I Control Chart for Individual Observations Based on Empirical Likelihood Ratio , 2015, Qual. Reliab. Eng. Int..

[41]  Subhabrata Chakraborti,et al.  Two simple Shewhart-type multivariate nonparametric control charts , 2012 .

[42]  Zachary G. Stoumbos,et al.  Robustness to Non-Normality of the Multivariate EWMA Control Chart , 2002 .

[43]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[44]  Connie M. Borror,et al.  Robustness of the EWMA Control Chart to Non-Normality , 1999 .

[45]  Marion R. Reynolds,et al.  An Evaluation of a GLR Control Chart for Monitoring the Process Mean , 2010 .

[46]  Niall M. Adams,et al.  Two Nonparametric Control Charts for Detecting Arbitrary Distribution Changes , 2012 .

[47]  E. Yashchin Statistical Control Schemes: Methods, Applications and Generalizations , 1993 .

[48]  Shin-Li Lu,et al.  An Extended Nonparametric Exponentially Weighted Moving Average Sign Control Chart , 2015, Qual. Reliab. Eng. Int..

[49]  Fah Fatt Gan,et al.  An optimal design of CUSUM control charts for binomial counts , 1993 .

[50]  Peihua Qiu,et al.  A Rank-Based Multivariate CUSUM Procedure , 2001, Technometrics.

[51]  Rassoul Noorossana,et al.  Profile Monitoring Using Nonparametric Bootstrap T 2 Control Chart , 2012, Commun. Stat. Simul. Comput..

[52]  Victoria S. Jordan,et al.  Distribution-Free Phase I Control Charts for Subgroup Location , 2009 .

[53]  Dimitris K. Tasoulis,et al.  Nonparametric Monitoring of Data Streams for Changes in Location and Scale , 2011, Technometrics.

[54]  Seoung Bum Kim,et al.  Nonparametric multivariate control charts based on a linkage ranking algorithm , 2010, Qual. Reliab. Eng. Int..

[55]  S. W. Roberts,et al.  Control Chart Tests Based on Geometric Moving Averages , 2000, Technometrics.

[56]  Amitava Mukherjee,et al.  A New Distribution‐free Control Chart for Joint Monitoring of Unknown Location and Scale Parameters of Continuous Distributions , 2014, Qual. Reliab. Eng. Int..

[57]  Wei Jiang,et al.  Weighted CUSUM Control Charts for Monitoring Poisson Processes with Varying Sample Sizes , 2011 .

[58]  Peihua Qiu,et al.  Distribution-free multivariate process control based on log-linear modeling , 2008 .

[59]  Douglas M. Hawkins,et al.  A Nonparametric Change-Point Control Chart , 2010 .

[60]  Peihua Qiu,et al.  On Nonparametric Statistical Process Control of Univariate Processes , 2011, Technometrics.

[61]  P Laanvander,et al.  A class of distribution‐free control charts , 2004 .

[62]  R. Crosier Multivariate generalizations of cumulative sum quality-control schemes , 1988 .

[63]  Szu Hui Ng,et al.  Nonparametric CUSUM and EWMA Control Charts for Detecting Mean Shifts , 2010 .

[64]  Nola D. Tracy,et al.  Multivariate Control Charts for Individual Observations , 1992 .

[65]  Stephen V. Crowder,et al.  Design of Exponentially Weighted Moving Average Schemes , 1989 .

[66]  Karen A. F. Copeland Cumulative Sum Charts and Charting for Quality Improvement , 1999 .

[67]  M. A. Graham,et al.  A Phase I nonparametric Shewhart-type control chart based on the median , 2010 .

[68]  J. Ledolter,et al.  A Control Chart Based on Ranks , 1991 .

[69]  Fugee Tsung,et al.  A Multivariate Sign EWMA Control Chart , 2011, Technometrics.

[70]  W. H. Deitenbeck Introduction to statistical process control. , 1995, Healthcare facilities management series.

[71]  Daniel R. Jeske,et al.  Nonparametric CUSUM Control Charts and Their Use in Two-Stage SPC Applications , 2015 .

[72]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .

[73]  Marion R. Reynolds,et al.  A Nonparametric Procedure for Process Control Based on Within-Group Ranking , 1979 .

[74]  Amitava Mukherjee,et al.  Editorial to the Special Issue: Nonparametric Statistical Process Control Charts , 2015, Qual. Reliab. Eng. Int..

[75]  S. Bakir A Distribution-Free Shewhart Quality Control Chart Based on Signed-Ranks , 2004 .

[76]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[77]  Giovanna Capizzi,et al.  Recent Advances in Process Monitoring: Nonparametric and Variable-Selection Methods for Phase I and Phase II , 2015 .

[78]  D. Hawkins Multivariate quality control based on regression-adjusted variables , 1991 .

[79]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[80]  Amitava Mukherjee,et al.  Distribution-Free Exceedance CUSUM Control Charts for Location , 2013, Commun. Stat. Simul. Comput..

[81]  Peihua Qiu,et al.  Jump regression, image processing, and quality control , 2018 .

[82]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[83]  Regina Y. Liu,et al.  DDMA-charts: Nonparametric multivariate moving average control charts based on data depth , 2004 .

[84]  Mukund Raghavachari,et al.  Control chart based on the Hodges-Lehmann estimator , 1991 .

[85]  Serkan Eryilmaz,et al.  A Nonparametric Shewhart-Type Signed-Rank Control Chart Based on Runs , 2007, Commun. Stat. Simul. Comput..