Comparative Performance of Surrogate-Assisted MOEAs for Geometrical Design of Pin-Fin Heat Sinks

This paper presents the comparative performance of several surrogate-assisted multiobjective evolutionary algorithms (MOEAs) for geometrical design of a pin-fin heat sink (PFHS). The surrogate-assisted MOEAs are achieved by integrating multiobjective population-based incremental learning (PBIL) with a quadratic response surface model (QRS), a radial-basis function (RBF) interpolation technique, and a Kriging (KRG) or Gaussian process model. The mixed integer/continuous multiobjective design problem of PFHS with the objective to minimise junction temperature and fan pumping power simultaneously is posed. The optimum results obtained from using the original multiobjective PBIL and the three versions of hybrid PBIL are compared. It is shown that the hybrid PBIL using KRG is the best performer. The hybrid PBILs require less number of function evaluations to surpass the original PBIL.

[1]  Kyoungwoo Park,et al.  The application of the CFD and Kriging method to an optimization of heat sink , 2006 .

[2]  Marco Farina,et al.  Linked interpolation-optimization strategies for multicriteria optimization problems , 2005, Soft Comput..

[3]  M. Yovanovich,et al.  Optimization of Pin-Fin Heat Sinks in Bypass Flow Using Entropy Generation Minimization Method , 2008 .

[4]  Seo Young Kim,et al.  OPTIMIZATION OF PIN-FIN HEAT SINKS USING ANISOTROPIC LOCAL THERMAL NONEQUILIBRIUM POROUS MODEL IN A JET IMPINGING CHANNEL , 2003 .

[5]  R. Arumugam,et al.  Multi-objective optimization of flat plate heat sink using Taguchi-based Grey relational analysis , 2011 .

[6]  S. Bureerat,et al.  Geometrical Design of Plate-Fin Heat Sinks Using Hybridization of MOEA and RSM , 2008, IEEE Transactions on Components and Packaging Technologies.

[7]  Sujin Bureerat,et al.  Multiobjective Optimization of a Pin-Fin Heat Sink Using Evolutionary Algorithms , 2012 .

[8]  Kok Wai Wong,et al.  Surrogate-Assisted Evolutionary Optimization Frameworks for High-Fidelity Engineering Design Problems , 2005 .

[9]  J. G. Maveety,et al.  Heat transfer from square pin-fin heat sinks using air impingement cooling , 2002 .

[10]  A. Kuznetsov,et al.  Effect of Anisotropy in Permeability and Effective Thermal Conductivity on Thermal Performance of AN Aluminum Foam Heat Sink , 2001 .

[11]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[12]  J. Horng,et al.  Design Optimization for Pin-Fin Heat Sinks , 2005 .

[13]  R. N. Desmarais,et al.  Interpolation using surface splines. , 1972 .

[14]  Rajkumar Roy,et al.  Advances in Soft Computing , 2018, Lecture Notes in Computer Science.

[15]  Sujin Bureerat,et al.  Optimal Design of a Pin-Fin Heat Sink Using a Surrogate-Assisted Multiobjective Evolutionary Algorithm , 2011 .

[16]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[17]  Sujin Bureerat,et al.  Multiobjective Evolutionary Optimization of Splayed Pin-Fin Heat Sink , 2011 .

[18]  J. Maveety,et al.  Design of an optimal pin-fin heat sink with air impingement cooling , 2000 .

[19]  Sujin Bureerat,et al.  Population-Based Incremental Learning for Multiobjective Optimisation , 2007 .

[20]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[21]  Sujin Bureerat,et al.  Optimum plate-fin heat sinks by using a multi-objective evolutionary algorithm , 2010 .

[22]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .