Carboxymethylcellulose hydrogels crosslinked with keratin nanoparticles for efficient prednisolone delivery.

[1]  E. Muniz,et al.  Magnetic-responsive polysaccharide hydrogels as smart biomaterials: Synthesis, properties, and biomedical applications. , 2022, Carbohydrate polymers.

[2]  J. Tamarit,et al.  On the dimorphism of prednisolone: The topological pressure-temperature phase diagram involving forms I and II. , 2022, International journal of pharmaceutics.

[3]  S. Saha,et al.  Concentration-Dependent Effect of the Steroid Drug Prednisolone on a Lung Surfactant Monolayer. , 2022, Langmuir : the ACS journal of surfaces and colloids.

[4]  N. Nader,et al.  Effects of corticosteroids on Covid-19 patients: A systematic review and meta-analysis on clinical outcomes , 2021, Pulmonary Pharmacology & Therapeutics.

[5]  K. Popat,et al.  Rod-shaped keratin nanoparticles extracted from human hair by acid hydrolysis as photothermally triggered berberine delivery system , 2021, Advanced Powder Technology.

[6]  A. F. Rubira,et al.  Effect of chitin nanowhiskers on mechanical and swelling properties of Gum Arabic hydrogels nanocomposites. , 2021, Carbohydrate polymers.

[7]  R. Zamboni,et al.  Effects of the Blending Ratio on the Design of Keratin/Poly(butylene succinate) Nanofibers for Drug Delivery Applications , 2021, Biomolecules.

[8]  F. Garcia,et al.  Thermo-and pH-responsive chitosan/gellan gum hydrogels incorporated with the β-cyclodextrin/curcumin inclusion complex for efficient curcumin delivery , 2021 .

[9]  S. Antoniu,et al.  Corticosteroids in SARS-COV2 infection: certainties and uncertainties in clinical practice , 2021, Expert review of anti-infective therapy.

[10]  R. Rajapakse,et al.  Noyes-Whitney Dissolution Model-Based pH-Sensitive Slow Release of Paclitaxel (Taxol) from Human Hair-Derived Keratin Microparticle Carriers , 2021, BioMed research international.

[11]  M. Kipper,et al.  Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications , 2021, Pharmaceutics.

[12]  K. Popat,et al.  Biocompatible Crosslinked Nanofibers of Poly(Vinyl Alcohol)/Carboxymethyl-Kappa-Carrageenan Produced by a Green Process. , 2020, Macromolecular bioscience.

[13]  A. Munasinghe,et al.  SARS-CoV-2 and the pandemic of COVID-19 , 2020, Postgraduate Medical Journal.

[14]  D. Scariot,et al.  Chitosan hybrid microgels for oral drug delivery. , 2020, Carbohydrate polymers.

[15]  E. Muniz,et al.  Composite materials based on chitosan/gold nanoparticles: From synthesis to biomedical applications. , 2020, International journal of biological macromolecules.

[16]  E. Tambourgi,et al.  Drug polarity effect over the controlled release in casein and chondroitin sulfate-based hydrogels. , 2020, International journal of biological macromolecules.

[17]  N. Muhammad,et al.  Keratin - Based materials for biomedical applications , 2020, Bioactive materials.

[18]  E. Tambourgi,et al.  pH-responsive hybrid hydrogels: Chondroitin sulfate/casein trapped silica nanospheres for controlled drug release. , 2020, International journal of biological macromolecules.

[19]  Jhamak Nourmohammadi,et al.  Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. , 2019, International journal of biological macromolecules.

[20]  K. Popat,et al.  Chitosan/iota-carrageenan/curcumin-based materials performed by precipitating miscible solutions prepared in ionic liquid , 2019, Journal of Molecular Liquids.

[21]  K. Chatterjee,et al.  Comparative study of keratin extraction from human hair. , 2019, International journal of biological macromolecules.

[22]  W. Müller,et al.  Drug Delivery From Polymer-Based Nanopharmaceuticals—An Experimental Study Complemented by Simulations of Selected Diffusion Processes , 2019, Front. Bioeng. Biotechnol..

[23]  I. Vankelecom,et al.  Crosslinked PVDF membranes for aqueous and extreme pH nanofiltration , 2019, Journal of Membrane Science.

[24]  J. Fisher,et al.  Development of keratin-based membranes for potential use in skin repair. , 2019, Acta biomaterialia.

[25]  X. Zhou,et al.  Elaboration of a feather keratin/carboxymethyl cellulose complex exhibiting pH sensitivity for sustained pesticide release , 2018, Journal of Applied Polymer Science.

[26]  V. V. Shinde,et al.  Carboxymethyl cellulose-based superabsorbent hydrogels containing carboxymehtyl β-cyclodextrin for enhanced mechanical strength and effective drug delivery , 2018, European Polymer Journal.

[27]  R. Zamboni,et al.  Keratin-hydrotalcites hybrid films for drug delivery applications , 2018, European Polymer Journal.

[28]  Kazuhide Ito,et al.  Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms , 2018, International Journal of Heat and Mass Transfer.

[29]  O. N. Oliveira,et al.  Multifunctional hybrid aerogels: hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. , 2018, Nanoscale.

[30]  Zhang Lin,et al.  Study on effective extraction of keratin from human hair wastes , 2017 .

[31]  C. Popescu,et al.  DSC of human hair: a tool for claim support or incorrect data analysis? , 2016, International journal of cosmetic science.

[32]  V. Vinogradov,et al.  Biocomposites for wound-healing based on sol–gel magnetite , 2015 .

[33]  A. Zhivkov Electric Properties of Carboxymethyl Cellulose , 2013 .

[34]  Y. B. Torkia,et al.  Models for Type VI Adsorption Isotherms from a Statistical Mechanical Formulation , 2013 .

[35]  X. Yang,et al.  Preparation and Properties of Keratin/CMC Blend Membranes , 2013 .

[36]  M. Brebu,et al.  Thermal degradation of keratin waste , 2011 .

[37]  R. Pijnenborg,et al.  The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. , 2007, Human reproduction.

[38]  A. P. Maciel,et al.  Thermal analysis of caucasian human hair , 2005 .

[39]  K. Kaneko Determination of pore size and pore size distribution1. Adsorbents and catalysts , 1994 .

[40]  T. Heinze,et al.  Zum Polyelektrolytverhalten einer C-6-substituierten Carboxycellulose im Vergleich zu Carboxymethylcellulose , 1990 .

[41]  H. Eyring,et al.  The Differential Thermal Analysis of Natural and Modified Wool and Mohair , 1963 .

[42]  R. Fraser,et al.  Structure of α-Keratin , 1959, Nature.

[43]  K. Ng,et al.  2.25 Keratin as a Biomaterial , 2017 .

[44]  J. Bereiter-Hahn,et al.  Biology of the integument. 2. Vertebrates. , 1986 .