Impact of solution composition on the resistance of ion exchange membranes

[1]  Benny D. Freeman,et al.  Salt concentration dependence of ionic conductivity in ion exchange membranes , 2018 .

[2]  Douglas F. Call,et al.  Impact of natural organic matter and inorganic solutes on energy recovery from five real salinity gradients using reverse electrodialysis , 2017 .

[3]  P. M. Biesheuvel,et al.  Theory of Ion and Water Transport in Reverse-Osmosis Membranes , 2017, 1706.06835.

[4]  R. Karnik,et al.  Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. , 2017, Nature nanotechnology.

[5]  E. Drioli,et al.  Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion , 2017 .

[6]  P. M. Biesheuvel,et al.  Nernst-Planck transport theory for (reverse) electrodialysis: II. Effect of water transport through ion-exchange membranes , 2016, 1610.02833.

[7]  Hubertus V. M. Hamelers,et al.  On the Origin of the Membrane Potential Arising Across Densely Charged Ion Exchange Membranes: How Well Does the Teorell-Meyer-Sievers Theory Work? , 2016 .

[8]  H. Balmann,et al.  Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution , 2015 .

[9]  J. Veerman,et al.  Membrane resistance: The effect of salinity gradients over a cation exchange membrane , 2014 .

[10]  Jin Gi Hong,et al.  Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation , 2014 .

[11]  Dc Kitty Nijmeijer,et al.  Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis , 2014 .

[12]  Marta C. Hatzell,et al.  Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks , 2014 .

[13]  Jin Gi Hong,et al.  Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions , 2013 .

[14]  B. Logan,et al.  Ionic resistance and permselectivity tradeoffs in anion exchange membranes. , 2013, ACS applied materials & interfaces.

[15]  J. W. Post,et al.  Validity of the Boltzmann equation to describe Donnan equilibrium at the membrane–solution interface , 2013 .

[16]  B. Freeman,et al.  Sodium chloride sorption in sulfonated polymers for membrane applications , 2012 .

[17]  D. Nordstrom,et al.  Comparison of electrical conductivity calculation methods for natural waters , 2012 .

[18]  X. Le Concentration polarization and conductance of cation exchange membranes in sulfuric acid and alkaline sulfate media , 2012 .

[19]  B. Tansel Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects , 2012 .

[20]  Yongming Zhang,et al.  High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes , 2012 .

[21]  Kitty Nijmeijer,et al.  Doubled power density from salinity gradients at reduced intermembrane distance. , 2011, Environmental science & technology.

[22]  B. Freeman,et al.  Effect of Free Volume on Water and Salt Transport Properties in Directly Copolymerized Disulfonated Poly(arylene ether sulfone) Random Copolymers , 2011 .

[23]  Anita J. Hill,et al.  Characterization of sodium chloride and water transport in crosslinked poly(ethylene oxide) hydrogels , 2010 .

[24]  Matthias Wessling,et al.  On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport , 2010 .

[25]  G. J. Harmsen,et al.  Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density , 2009 .

[26]  A. Yaroshchuk,et al.  Electrochemical perm-selectivity of active layers and diffusion permeability of supports of an asymmetric and a composite NF membrane studied by concentration-step method , 2009 .

[27]  Matthias Wessling,et al.  Practical potential of reverse electrodialysis as process for sustainable energy generation. , 2009, Environmental science & technology.

[28]  J. Post,et al.  Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. , 2008, Environmental science & technology.

[29]  Matthias Wessling,et al.  Current status of ion exchange membranes for power generation from salinity gradients , 2008 .

[30]  N. Kononenko,et al.  Characterization of ion-exchange membrane materials: properties vs structure. , 2008, Advances in colloid and interface science.

[31]  J. Veerman,et al.  Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model , 2008 .

[32]  F. Harnisch,et al.  The suitability of monopolar and bipolar ion exchange membranes as separators for biological fuel cells. , 2008, Environmental science & technology.

[33]  V. Vlachy,et al.  Self-diffusion coefficients of ions in the presence of charged obstacles. , 2008, Physical chemistry chemical physics : PCCP.

[34]  J. Runt,et al.  Counterion Effects on Ion Mobility and Mobile Ion Concentration of Doped Polyphosphazene and Polyphosphazene Ionomers , 2007 .

[35]  J. Post,et al.  Salinity-gradient power : Evaluation of pressure-retarded osmosis and reverse electrodialysis , 2007 .

[36]  Jae-Hwan Choi,et al.  An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. , 2006, Journal of colloid and interface science.

[37]  Berrin Tansel,et al.  Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes , 2006 .

[38]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[39]  T. Sata,et al.  Ion Exchange Membranes: Preparation, Characterization, Modification and Application , 2004 .

[40]  J. Manzanares,et al.  Modeling of surface vs. bulk ionic conductivity in fixed charge membranes , 2003 .

[41]  O. Zschörnig,et al.  The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. , 2002, Chemistry and physics of lipids.

[42]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[43]  D. Deamer,et al.  Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers , 1997 .

[44]  Gerhard Hummer,et al.  Free Energy of Ionic Hydration , 1996 .

[45]  S. Koter,et al.  Irreversible thermodynamics of transport across charged membranes. Part VI. Frictional interactions and coupling effects in transport of acid through anion exchange membranes , 1995 .

[46]  Victor Nikonenko,et al.  Effect of structural membrane inhomogeneity on transport properties , 1993 .

[47]  R. Wódzki,et al.  Diffusion of electrolytes across inhomogeneous permselective membranes , 1979 .

[48]  J. Oster,et al.  CALCULATION OF ELECTRICAL CONDUCTIVITY FROM SOLUTION COMPOSITION DATA AS AN AID TO IN-SITU ESTIMATION OF SOIL SALINITY , 1970 .

[49]  H. Yasuda,et al.  Permeability of Solutes through Hydrated Polymer Membranes Part I. Diffusion of Sodium Chloride , 1968 .

[50]  S. Prager,et al.  Diffusion in Inhomogeneous Media , 1960 .

[51]  H. Theil,et al.  Economic Forecasts and Policy. , 1959 .

[52]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .

[53]  P. Meares,et al.  The diffusion of electrolytes in a cation-exchange resin membrane. II. Experimental , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  Benny D. Freeman,et al.  Fundamental water and salt transport properties of polymeric materials , 2014 .

[55]  Matthias Wessling,et al.  Transport limitations in ion exchange membranes at low salt concentrations , 2010 .

[56]  James W. Ball,et al.  WATEQ4F -- User's manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters , 1991 .

[57]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[58]  L. Pauling The Nature Of The Chemical Bond , 1939 .