Optogenetic control of cell function using engineered photoreceptors

Over the past decades, there has been growing recognition that light can provide a powerful stimulus for biological interrogation. Light‐actuated tools allow manipulation of molecular events with ultra‐fine spatial and fast temporal resolution, as light can be rapidly delivered and focused with sub‐micrometre precision within cells. While light‐actuated chemicals such as photolabile ‘caged’ compounds have been in existence for decades, the use of genetically encoded natural photoreceptors for optical control of biological processes has recently emerged as a powerful new approach with several advantages over traditional methods. Here, we review recent advances using light to control basic cellular functions and discuss the engineering challenges that lie ahead for improving and expanding the ever‐growing optogenetic toolkit.

[1]  B. Liu,et al.  Searching for a photocycle of the cryptochrome photoreceptors. , 2010, Current opinion in plant biology.

[2]  T. Sakmar,et al.  Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. , 1992, The Journal of biological chemistry.

[3]  Yan Liu,et al.  The C Termini of Arabidopsis Cryptochromes Mediate a Constitutive Light Response , 2000, Cell.

[4]  E. Boyden,et al.  Genetically encoded molecular tools for light-driven silencing of targeted neurons. , 2012, Progress in brain research.

[5]  Tobias Meyer,et al.  An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways , 2005, Nature Methods.

[6]  A. Sancar Structure and Function of Photolyase and in Vivo Enzymology: 50th Anniversary* , 2008, Journal of Biological Chemistry.

[7]  W. P. Russ,et al.  Surface Sites for Engineering Allosteric Control in Proteins , 2008, Science.

[8]  J. Christie,et al.  Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function. , 2002, The Plant journal : for cell and molecular biology.

[9]  C. Price,et al.  The Blue-Light Receptor YtvA Acts in the Environmental Stress Signaling Pathway of Bacillus subtilis , 2006, Journal of bacteriology.

[10]  N. Rockwell,et al.  Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily. , 2012, Biochemistry.

[11]  J. Christie,et al.  Physiological Roles of the Light, Oxygen, or Voltage Domains of Phototropin 1 and Phototropin 2 in Arabidopsis1[OA] , 2006, Plant Physiology.

[12]  M. Ikeuchi,et al.  Novel photosensory two-component system (PixA-NixB-NixC) involved in the regulation of positive and negative phototaxis of cyanobacterium Synechocystis sp. PCC 6803. , 2011, Plant & cell physiology.

[13]  E. Liscum,et al.  Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. , 1995, The Plant cell.

[14]  Christopher A. Voigt,et al.  Synthetic biology: Engineering Escherichia coli to see light , 2005, Nature.

[15]  Aravinthan D. T. Samuel,et al.  Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans , 2011, Nature Methods.

[16]  Seth J. Davis,et al.  Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore , 2001, Nature.

[17]  R. M. Hughes,et al.  Light-mediated control of DNA transcription in yeast. , 2012, Methods.

[18]  K. Gardner,et al.  Estimation of the available free energy in a LOV2-J alpha photoswitch. , 2008, Nature chemical biology.

[19]  A. Losi,et al.  Novel blue light-sensitive proteins from a metagenomic approach. , 2009, Environmental microbiology.

[20]  M. Ikeuchi,et al.  Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteria , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[21]  P. Quail,et al.  Phytochrome functions in Arabidopsis development. , 2010, Journal of experimental botany.

[22]  Jennifer J. Loros,et al.  Conformational Switching in the Fungal Light Sensor Vivid , 2007, Science.

[23]  S. Crosson,et al.  Photoregulation in prokaryotes. , 2008, Current opinion in microbiology.

[24]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[25]  J. Chory,et al.  Phytochrome signaling mechanisms and the control of plant development. , 2011, Trends in cell biology.

[26]  J. Chory,et al.  Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway , 2008, Proceedings of the National Academy of Sciences.

[27]  T. Ritz,et al.  The cryptochromes: blue light photoreceptors in plants and animals. , 2011, Annual review of plant biology.

[28]  Aziz Sancar,et al.  Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. , 2003, Chemical reviews.

[29]  G. Gambetta,et al.  Genetic engineering of phytochrome biosynthesis in bacteria , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Chentao Lin,et al.  The action mechanisms of plant cryptochromes. , 2011, Trends in plant science.

[31]  Baldissera Giovani,et al.  Light-induced electron transfer in a cryptochrome blue-light photoreceptor , 2003, Nature Structural Biology.

[32]  Zhen Yan,et al.  Structural basis of ultraviolet-B perception by UVR8 , 2012, Nature.

[33]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Feng Zhang,et al.  Molecular Tools and Approaches for Optogenetics , 2012, Biological Psychiatry.

[35]  Xiaolan Yao,et al.  Rationally improving LOV domain–based photoswitches , 2010, Nature Methods.

[36]  P. De Camilli,et al.  Optogenetic control of phosphoinositide metabolism , 2012, Proceedings of the National Academy of Sciences.

[37]  Lief E. Fenno,et al.  The Microbial Opsin Family of Optogenetic Tools , 2011, Cell.

[38]  Rebecca A. Ayers,et al.  Structure and function of plant photoreceptors. , 2010, Annual review of plant biology.

[39]  Jessica Siltberg-Liberles,et al.  Natural and Engineered Photoactivated Nucleotidyl Cyclases for Optogenetic Applications* , 2010, The Journal of Biological Chemistry.

[40]  Amy B Tyszkiewicz,et al.  Activation of protein splicing with light in yeast , 2008, Nature Methods.

[41]  K. Nakai,et al.  [Controlling signal transduction with synthetic ligands]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[42]  J. Christie,et al.  Steric interactions stabilize the signaling state of the LOV2 domain of phototropin 1. , 2007, Biochemistry.

[43]  A. Losi,et al.  Old Chromophores, New Photoactivation Paradigms, Trendy Applications: Flavins in Blue Light‐Sensing Photoreceptors † , 2011, Photochemistry and photobiology.

[44]  N. Rockwell,et al.  Mechanistic insight into the photosensory versatility of DXCF cyanobacteriochromes. , 2012, Biochemistry.

[45]  Filip Vandenbussche,et al.  Cryptochrome Blue Light Photoreceptors Are Activated through Interconversion of Flavin Redox States* , 2007, Journal of Biological Chemistry.

[46]  J. Dunlap,et al.  Light-Inducible System for Tunable Protein Expression in Neurospora crassa , 2012, G3: Genes, Genomes, Genetics.

[47]  R. Tsien,et al.  Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer , 1996, Current Biology.

[48]  A. Losi,et al.  Bacterial bilin- and flavin-binding photoreceptors , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[49]  Chandra L Tucker,et al.  Light-dependent, Dark-promoted Interaction between Arabidopsis Cryptochrome 1 and Phytochrome B Proteins*♦ , 2012, The Journal of Biological Chemistry.

[50]  T. Todo,et al.  The cryptochromes , 2005, Genome Biology.

[51]  B. Kuhlman,et al.  A genetically-encoded photoactivatable Rac controls the motility of living cells , 2009, Nature.

[52]  Jared E. Toettcher,et al.  Light-based feedback for controlling intracellular signaling dynamics , 2011, Nature Methods.

[53]  A. Sancar Photolyase and cryptochrome blue-light photoreceptors. , 2004, Advances in protein chemistry.

[54]  Charles A. Gersbach,et al.  Light-Inducible Spatiotemporal Control of Gene Activation by Customizable Zinc Finger Transcription Factors , 2012, Journal of the American Chemical Society.

[55]  Trevor E Swartz,et al.  Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein , 2011, Proceedings of the National Academy of Sciences.

[56]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Christie,et al.  LOV to BLUF: flavoprotein contributions to the optogenetic toolkit. , 2012, Molecular plant.

[58]  Andreas Möglich,et al.  Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA. , 2007, Journal of molecular biology.

[59]  Chentao Lin,et al.  Cryptochrome structure and signal transduction. , 2003, Annual review of plant biology.

[60]  J. Orange,et al.  Function and Regulation of Natural Killer (NK) Cells during Viral Infections: Characterization of Responsesin Vivo , 1996 .

[61]  Karl Deisseroth,et al.  Optogenetics in Neural Systems , 2011, Neuron.

[62]  Andreas Möglich,et al.  From dusk till dawn: one-plasmid systems for light-regulated gene expression. , 2012, Journal of molecular biology.

[63]  Kevin H. Gardner,et al.  Structural Basis of a Phototropin Light Switch , 2003, Science.

[64]  Dan Siegal-Gaskins,et al.  A photosensory two-component system regulates bacterial cell attachment , 2007, Proceedings of the National Academy of Sciences.

[65]  Brian Kuhlman,et al.  Designing photoswitchable peptides using the AsLOV2 domain. , 2012, Chemistry & biology.

[66]  T. Lamparter,et al.  The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1. , 2004, Biochemistry.

[67]  Keith Moffat,et al.  N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. , 2007, Biochemistry.

[68]  Josiah P. Zayner,et al.  TULIPs: Tunable, light-controlled interacting protein tags for cell biology , 2012, Nature Methods.

[69]  Stephen J. Benkovic,et al.  LOVely enzymes – towards engineering light‐controllable biocatalysts , 2009, Microbial biotechnology.

[70]  A. Batschauer,et al.  Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy. , 2006, Biochemistry.

[71]  K. Hellingwerf,et al.  On the midpoint potential of the FAD chromophore in a BLUF‐domain containing photoreceptor protein , 2011, FEBS letters.

[72]  K. Satyshur,et al.  Structure-guided Engineering Enhances a Phytochrome-based Infrared Fluorescent Protein* , 2011, The Journal of Biological Chemistry.

[73]  E. Huq,et al.  A light-switchable gene promoter system , 2002, Nature Biotechnology.

[74]  R. Bittl,et al.  The Signaling State of Arabidopsis Cryptochrome 2 Contains Flavin Semiquinone* , 2007, Journal of Biological Chemistry.

[75]  R. Vierstra,et al.  Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. , 1999, Science.

[76]  K. Gardner,et al.  A conserved glutamine plays a central role in LOV domain signal transmission and its duration. , 2008, Biochemistry.

[77]  Gareth I Jenkins,et al.  Plant UVR8 Photoreceptor Senses UV-B by Tryptophan-Mediated Disruption of Cross-Dimer Salt Bridges , 2012, Science.

[78]  Walther Akemann,et al.  A comprehensive concept of optogenetics. , 2012, Progress in Brain Research.

[79]  Yi Yang,et al.  Spatiotemporal control of gene expression by a light-switchable transgene system , 2012, Nature Methods.

[80]  A. Losi,et al.  Metagenome‐based Screening Reveals Worldwide Distribution of LOV‐Domain Proteins , 2012, Photochemistry and photobiology.

[81]  Oded Béjà,et al.  Diversification and spectral tuning in marine proteorhodopsins , 2003, The EMBO journal.

[82]  A. Losi,et al.  Modulation of the photocycle of a LOV domain photoreceptor by the hydrogen-bonding network. , 2011, Journal of the American Chemical Society.

[83]  J. Christie,et al.  Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. , 2000, Biochemistry.

[84]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[85]  Klaas J Hellingwerf,et al.  Photoreceptor proteins, "star actors of modern times": a review of the functional dynamics in the structure of representative members of six different photoreceptor families. , 2004, Accounts of chemical research.

[86]  Christopher A. Voigt,et al.  Multichromatic control of gene expression in Escherichia coli. , 2011, Journal of molecular biology.

[87]  R. Dolmetsch,et al.  Induction of protein-protein interactions in live cells using light , 2009, Nature Biotechnology.

[88]  Kate S. Carroll,et al.  Mechanisms of Spectral Tuning in Blue Cone Visual Pigments , 1998, The Journal of Biological Chemistry.

[89]  R. Bogomolni,et al.  Blue-Light-Activated Histidine Kinases: Two-Component Sensors in Bacteria , 2007, Science.

[90]  B. Zoltowski,et al.  Mechanism-based tuning of a LOV domain photoreceptor. , 2009, Nature chemical biology.

[91]  K. Moffat,et al.  Light-activated DNA binding in a designed allosteric protein , 2008, Proceedings of the National Academy of Sciences.

[92]  Yusuke Takahashi,et al.  Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment. , 2003, Biochemistry.

[93]  A. Cashmore,et al.  HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor , 1993, Nature.

[94]  D. Pincus,et al.  In silico feedback for in vivo regulation of a gene expression circuit , 2011, Nature Biotechnology.

[95]  K. Gardner,et al.  Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions. , 2011, Biochemistry.

[96]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[97]  A. Losi,et al.  Mutual exchange of kinetic properties by extended mutagenesis in two short LOV domain proteins from Pseudomonas putida. , 2009, Biochemistry.

[98]  K. Moffat,et al.  Crystal structures of Aureochrome1 LOV suggest new design strategies for optogenetics. , 2012, Structure.

[99]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[100]  B. Crane,et al.  Structure of a Light-Activated LOV Protein Dimer That Regulates Transcription , 2011, Science Signaling.

[101]  Rebecca A. Ayers,et al.  Design and signaling mechanism of light‐regulated histidine kinases , 2009, Journal of molecular biology.

[102]  Christopher A. Voigt,et al.  Spatiotemporal Control of Cell Signalling Using A Light-Switchable Protein Interaction , 2009, Nature.

[103]  K. Gardner,et al.  Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity. , 2004, Biochemistry.

[104]  E. Getzoff,et al.  Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome. , 2011, Journal of molecular biology.

[105]  Yi-shin Su,et al.  Phytochrome structure and signaling mechanisms. , 2006, Annual review of plant biology.