Turning ZrTe5 into a semiconductor through atom intercalation

[1]  J. Chu,et al.  Evidence for a strain-tuned topological phase transition in ZrTe5 , 2018, Science Advances.

[2]  Kun Yang,et al.  Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5 , 2018, Nature.

[3]  Shaomin Li,et al.  Superconductivity in Potassium-Intercalated T d-WTe2. , 2018, Nano letters.

[4]  Yuan Yao,et al.  Vanishing quantum oscillations in Dirac semimetal ZrTe5 , 2018, Proceedings of the National Academy of Sciences.

[5]  R. Joynt,et al.  Discrete Scale Invariance in Topological Semimetals. , 2018, 1807.02459.

[6]  Yongbing Xu,et al.  Evidence for Layered Quantized Transport in Dirac Semimetal ZrTe5 , 2018, Scientific Reports.

[7]  Q. Gibson,et al.  Anomalous Hall effect in ZrTe5 , 2018, Nature Physics.

[8]  Yan-Feng Chen,et al.  Shubnikov-de Haas oscillations in bulk ZrT e 5 single crystals: Evidence for a weak topological insulator , 2018 .

[9]  Peng Li,et al.  Giant planar Hall effect in the Dirac semimetal ZrTe5−δ , 2018, Physical Review B.

[10]  J. Neaton,et al.  Thermodynamic signature of Dirac electrons across a possible topological transition in ZrTe 5 , 2018 .

[11]  Jiaqiang Yan,et al.  Discovery of log-periodic oscillations in ultraquantum topological materials , 2017, Science Advances.

[12]  Jiaqiang Yan,et al.  Bipolar Conduction as the Possible Origin of the Electronic Transition in Pentatellurides: Metallic vs Semiconducting Behavior , 2016, Physical Review X.

[13]  J. Nishii,et al.  Proton-Driven Intercalation and Ion Substitution Utilizing Solid-State Electrochemical Reaction. , 2017, Journal of the American Chemical Society.

[14]  J. Neaton,et al.  Thermodynamic signatures for the existence of Dirac electrons in ZrTe5 , 2017, 1708.03320.

[15]  M. X. Wang,et al.  Spectroscopic evidence for the gapless electronic structure in bulk ZrTe 5 , 2017 .

[16]  P. Bugnon,et al.  Temperature dependent non-monotonic bands shift in ZrTe5 , 2017 .

[17]  D. Smirnov,et al.  Landau-level spectroscopy of massive Dirac fermions in single-crystalline ZrTe 5 thin flakes , 2017 .

[18]  Yi-Xiang Wang Magneto-optical conductivity study in three-dimensional Dirac semimetals of ZrTe5 , 2017 .

[19]  Y.Jiang,et al.  Landau level spectroscopy of massive Dirac fermions in single-crystalline ZrTe5 thin flakes , 2017, 1703.08193.

[20]  H. Soifer,et al.  Band structure of ZrTe$_5$ measured by high-momentum-resolution photoemission spectroscopy , 2017, 1704.05161.

[21]  Nan Wang,et al.  Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5 , 2017, Proceedings of the National Academy of Sciences.

[22]  Y. Wang,et al.  Disruption of the Accidental Dirac Semimetal State in ZrTe_{5} under Hydrostatic Pressure. , 2017, Physical review letters.

[23]  Kun Yang,et al.  Thickness-tuned transition of band topology in ZrT e 5 nanosheets , 2016, 1611.08679.

[24]  S. Yao,et al.  Transition between strong and weak topological insulator in ZrTe5 and HfTe5 , 2016, Scientific Reports.

[25]  Kun Yang,et al.  Field-induced topological phase transition from a three-dimensional Weyl semimetal to a two-dimensional massive Dirac metal in ZrT e 5 , 2016, 1607.05384.

[26]  Lin Zhao,et al.  Electronic evidence of temperature-induced Lifshitz transition and topological nature in ZrTe5 , 2016, Nature Communications.

[27]  Yan-Feng Chen,et al.  Microstructure, growth mechanism and anisotropic resistivity of quasi-one-dimensional ZrTe5 crystal , 2017 .

[28]  P. Lu,et al.  Quantum Oscillations at Integer and Fractional Landau Level Indices in Single-Crystalline ZrTe5 , 2016, Scientific Reports.

[29]  M. Tinto,et al.  Coherent observations of gravitational radiation with LISA and gLISA , 2016, 1608.04790.

[30]  L. Li,et al.  Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5 , 2016, Nature Communications.

[31]  P. Bugnon,et al.  Evidence for a Strong Topological Insulator Phase in ZrTe_{5}. , 2016, Physical review letters.

[32]  A. Bostwick,et al.  Nature and topology of the low-energy states in ZrTe 5 , 2016 .

[33]  Xianfan Xu,et al.  Observation of Optical and Electrical In-Plane Anisotropy in High-Mobility Few-Layer ZrTe5. , 2016, Nano letters.

[34]  Xuejie Huang,et al.  Evidence for Topological Edge States in a Large Energy Gap near the Step Edges on the Surface of ZrTe 5 , 2016 .

[35]  Q. Xue,et al.  Experimental Observation of Topological Edge States at the Surface Step Edge of the Topological Insulator ZrTe_{5}. , 2016, Physical review letters.

[36]  Kun Yang,et al.  Transport evidence for the three-dimensional Dirac semimetal phase in ZrT e 5 , 2016, 1603.05351.

[37]  Wenge Yang,et al.  Pressure-induced superconductivity in a three-dimensional topological material ZrTe5 , 2015, Proceedings of the National Academy of Sciences.

[38]  G. Gu,et al.  Chiral magnetic effect in ZrTe5 , 2014, Nature Physics.

[39]  Xiumei Ma,et al.  Electrical transport in nanothick ZrTe 5 sheets: From three to two dimensions , 2015, 1511.09315.

[40]  S. Sanvito,et al.  Observation of quasi-two-dimensional Dirac fermions in ZrTe5 , 2015, 1510.00907.

[41]  G. Gu,et al.  Magnetoinfrared Spectroscopy of Landau Levels and Zeeman Splitting of Three-Dimensional Massless Dirac Fermions in ZrTe(5). , 2015, Physical review letters.

[42]  G. Gu,et al.  Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe 5 , 2015, 1505.00307.

[43]  Hai-Zhou Lu,et al.  Weak antilocalization and localization in disordered and interacting Weyl semimetals , 2014, 1411.2686.

[44]  S. Y. Li,et al.  Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd₃As₂. , 2014, Physical review letters.

[45]  X. Dai,et al.  Transition-Metal Pentatelluride ZrTe 5 and HfTe 5 : A Paradigm for Large-Gap Quantum Spin Hall Insulators , 2013, 1309.7529.

[46]  Gang Wang,et al.  Superconducting phases in potassium-intercalated iron selenides. , 2013, Journal of the American Chemical Society.

[47]  T. Tritt,et al.  Transition-metal pentatellurides as potential low-temperature thermoelectric refrigeration materials , 1999 .

[48]  T. Tritt,et al.  Large enhancement of the resistive anomaly in the pentatelluride materials HfTe 5 and ZrTe 5 with applied magnetic field , 1999 .

[49]  M. Rubinstein HFTE5 AND ZRTE5 : POSSIBLE POLARONIC CONDUCTORS , 1999 .

[50]  Tsuchiya More on one-loop massless amplitudes of superstring theories. , 1989, Physical review. D, Particles and fields.

[51]  Gillespie,et al.  Effect of elastic tension on the electrical resistance of HfTe5 and ZrTe5. , 1989, Physical review. B, Condensed matter.

[52]  M. Izumi,et al.  Shubnikov-de Haas oscillations and Fermi surfaces in transition-metal pentatellurides ZrTe5 and HfTe5 , 1987 .

[53]  H. Fjellvåg,et al.  Structural properties of ZrTe5 and HfTe5 as seen by powder diffraction , 1986 .

[54]  Gillespie,et al.  Fermi surface, effective masses, and Dingle temperatures of ZrTe5 as derived from the Shubnikov-de Haas effect. , 1985, Physical review. B, Condensed matter.

[55]  F. Lévy,et al.  Raman scattering in quasi-one-dimensional ZrTe5 , 1983 .

[56]  A. Zwick,et al.  Lattice modes in the linear chain compound ZrTe5 , 1982 .

[57]  F. Lévy,et al.  Thermoelectric power of HfTe5 and ZrTe5 , 1982 .

[58]  T. Sambongi,et al.  Giant resistivity anomaly in ZrTe5 , 1980 .

[59]  R. Somoano,et al.  Alkali metal intercalates of molybdenum disulfide. , 1973 .