Test of fit for Marshall–Olkin distributions with applications

Abstract Marshall and Olkin [1967. A multivariate exponential distribution. J. Amer. Statist. Assoc. 62, 30–44], introduced a bivariate distribution with exponential marginals, which generalizes the simple case of a bivariate random variable with independent exponential components. The distribution is popular under the name ‘Marshall–Olkin distribution’, and has been extended to the multivariate case. L2-type statistics are constructed for testing the composite null hypothesis of the Marshall–Olkin distribution with unspecified parameters. The test statistics utilize the empirical Laplace transform with consistently estimated parameters. Asymptotic properties pertaining to the null distribution of the test statistic and the consistency of the test are investigated. Theoretical results are accompanied by a simulation study, and real-data applications.

[1]  N. Henze,et al.  Goodness-of-Fit Tests for the Inverse Gaussian Distribution Based on the Empirical Laplace Transform , 2002 .

[2]  J. Beran,et al.  On Estimating the Cumulant Generating Function of Linear Processes , 2006 .

[3]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[4]  S. Meintanis,et al.  Goodness-of-Fit Tests for Additively Closed Count Models with an Application to the Generalized Hermite Distribution , 2005 .

[5]  K. Singleton,et al.  A test of separate families of distributions based on the empirical moment generating function , 1982 .

[6]  S. Meintanis,et al.  Tests of fit for the Rayleigh distribution based on the empirical Laplace transform , 2003 .

[7]  A. Quiroz,et al.  Using the empirical moment generating function in testing for the Weibull and the type I extreme value distributions , 2005 .

[8]  T. W. Epps,et al.  Parameter estimates and tests of fit for infinite mixther distrirutions , 1985 .

[9]  J. J. Higgins,et al.  Estimation and Hypothesis Testing for the Parameters of a Bivariate Exponential Distribution , 1972 .

[10]  J. Beran,et al.  Two-Sample T 3 Plot: A Graphical Comparison of Two Distributions , 2000 .

[11]  I. Olkin,et al.  A Multivariate Exponential Distribution , 1967 .

[12]  Frank Proschan,et al.  Estimating the Parameters of a Multivariate Exponential Distribution , 1976 .

[13]  Simos G. Meintanis,et al.  Estimation in the three-parameter inverse Gaussian distribution , 2005, Comput. Stat. Data Anal..