The Impact of Topology on Byzantine Containment in Stabilization

Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permits to cope with arbitrary malicious behaviors. We consider the well known problem of constructing a maximum metric tree in this context. Combining these two properties proves difficult: we demonstrate that it is impossible to contain the impact of Byzantine nodes in a self-stabilizing context for maximum metric tree construction (strict stabilization). We propose a weaker containment scheme called topology-aware strict stabilization, and present a protocol for computing maximum metric trees that is optimal for this scheme with respect to impossibility result.

[1]  Maria Gradinariu Potop-Butucaru,et al.  Self-Stabilizing Byzantine Asynchronous Unison , 2009, J. Parallel Distributed Comput..

[2]  Danny Dolev,et al.  Self-stabilization of Byzantine Protocols , 2005, Self-Stabilizing Systems.

[3]  Shlomi Dolev,et al.  Self Stabilization , 2004, J. Aerosp. Comput. Inf. Commun..

[4]  Fukuhito Ooshita,et al.  A Self-stabilizing Link-Coloring Protocol Resilient to Byzantine Faults in Tree Networks , 2004, OPODIS.

[5]  Danny Dolev,et al.  Fast self-stabilizing byzantine tolerant digital clock synchronization , 2008, PODC '08.

[6]  T. Masuzawa,et al.  Stabilizing Link-Coloration of Arbitrary Networks with Unbounded Byzantine Faults , 2007 .

[7]  Mikhail J. Atallah,et al.  Algorithms and Theory of Computation Handbook , 2009, Chapman & Hall/CRC Applied Algorithms and Data Structures series.

[8]  Sébastien Tixeuil,et al.  Self-stabilizing algorithms , 2010 .

[9]  R. Downey,et al.  Algorithms and Theory of Computation Handbook, Second Edition , 2007 .

[10]  Jennifer L. Welch,et al.  Self-Stabilizing Clock Synchronization in the Presence of ByzantineFaults ( Preliminary Version ) Shlomi Dolevy , 1995 .

[11]  Danny Dolev,et al.  Self-stabilizing Byzantine Digital Clock Synchronization , 2006, SSS.

[12]  Mohamed G. Gouda,et al.  Maximizable routing metrics , 2003, TNET.

[13]  Leslie Lamport,et al.  The Byzantine Generals Problem , 1982, TOPL.

[14]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[15]  Danny Dolev,et al.  On Self-stabilizing Synchronous Actions Despite Byzantine Attacks , 2007, DISC.

[16]  Anish Arora,et al.  Tolerance to unbounded Byzantine faults , 2002, 21st IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings..

[17]  Mohamed G. Gouda,et al.  Stabilization of maximal metric trees , 1999, Proceedings 19th IEEE International Conference on Distributed Computing Systems.

[18]  Sébastien Tixeuil,et al.  Discovering Network Topology in the Presence of Byzantine Faults , 2009, IEEE Trans. Parallel Distributed Syst..