MOOSE: A parallel computational framework for coupled systems of nonlinear equations

Systems of coupled, nonlinear partial di?erential equations often arise in sim- ulation of nuclear processes. MOOSE: Multiphysics Ob ject Oriented Simulation Environment, a parallel computational framework targeted at solving these systems is presented. As opposed to traditional data / ?ow oriented com- putational frameworks, MOOSE is instead founded on mathematics based on Jacobian-free Newton Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics are modularized into “Kernels” allowing for rapid production of new simulation tools. In addition, systems are solved fully cou- pled and fully implicit employing physics based preconditioning allowing for a large amount of ?exibility even with large variance in time scales. Background on the mathematics, an inspection of the structure of MOOSE and several rep- resentative solutions from applications built on the framework are presented.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  J. Shadid,et al.  Studies of the Accuracy of Time Integration Methods for Reaction-Diffusion Equations ∗ , 2005 .

[3]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[4]  William J. Rider,et al.  Physics-Based Preconditioning and the Newton-Krylov Method for Non-equilibrium Radiation Diffusion , 2000 .

[5]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[6]  E. Sartori,et al.  Fuel Modelling at Extended Burnup: IAEA Coordinated Research Project FUMEX-II , 2007 .

[7]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[8]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[9]  B. Stoecker,et al.  Data sets of the SANA experiment 1994-1996 , 1997 .

[10]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[11]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[12]  L. Margolin,et al.  On balanced approximations for time integration of multiple time scale systems , 2003 .

[13]  Glen Hansen,et al.  Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods , 2009 .

[14]  J. David Moulton,et al.  Efficient nonlinear solvers for Laplace-Beltrami smoothing of three-dimensional unstructured grids , 2008, Comput. Math. Appl..

[15]  W. Lafayette,et al.  The OECD/NEA/NSC PBMR coupled neutronics/thermal hydraulics transient benchmark: The PBMR-400 core design , 2006 .

[16]  J. Shadid,et al.  Studies on the accuracy of time-integration methods for the radiation-diffusion equations , 2004 .

[17]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[18]  D. A. Knoll,et al.  New physics-based preconditioning of implicit methods for non-equilibrium radiation diffusion , 2003 .

[19]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[20]  Dana A. Knoll,et al.  An Implicit, Nonlinear Reduced Resistive MHD Solver , 2002 .

[21]  William J. Rider,et al.  A Multigrid Preconditioned Newton-Krylov Method , 1999, SIAM J. Sci. Comput..

[22]  L. A. Schoof,et al.  EXODUS II: A finite element data model , 1994 .

[23]  Dana A. Knoll,et al.  Temporal Accuracy of the Nonequilibrium Radiation Diffusion Equations Applied to Two-Dimensional Multimaterial Simulations , 2006 .

[24]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[25]  John N. Shadid,et al.  Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems , 2005 .

[26]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[27]  Vincent A. Mousseau,et al.  Accurate Solution of the Nonlinear Partial Differential Equations from Thermal Hydraulics: Thermal Hydraulics , 2007 .

[28]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .