Integrated FDI/FTC approach for wind turbines using a LPV interval predictor subspace approach and virtual sensors/actuators

In order to keep wind turbines connected and in operation at all times despite the occurrence of some faults, advanced fault detection and accommodation schemes are required. To achieve this goal, this paper proposes to use the Linear Parameter Varying approach to design an Active Fault Tolerant Control for wind turbines. This Active Fault Tolerant Control is integrated with a Fault Detection and Isolation approach. Fault detection is based on a Linear Parameter Varying interval predictor approach while fault isolation is based on analysing the residual fault signatures. To include fault-tolerance in the control system (already available in the considered wind turbine case study based on the well known SAFEPROCESS benchmark), the information of the Fault Detection and Isolation approach block is exploited and it is used in the implementation of a virtual actuator and sensor scheme. The proposed Active Fault Tolerant Control is evaluated using fault scenarios which are proposed in the wind turbine benchmark to assess its performance. Results show the effectiveness of the proposed Active Fault Tolerant Control approach in faulty situation.

[1]  M. V. Iordache,et al.  Diagnosis and Fault-Tolerant Control , 2007, IEEE Transactions on Automatic Control.

[2]  Vicenç Puig,et al.  Fault‐tolerant control design using the linear parameter varying approach , 2014 .

[3]  Peter Fogh Odgaard,et al.  A Youla-Kucera approach to gain-scheduling with application to wind turbine control , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[4]  Jakob Stoustrup,et al.  Robust and fault-tolerant linear parameter-varying control of wind turbines , 2011 .

[5]  Ismail Boumhidi,et al.  Fuzzy model-based faults diagnosis of the wind turbine benchmark , 2018 .

[6]  Peter Fogh Odgaard,et al.  Orthogonal Bases used for Feed Forward Control of Wind Turbines , 2011 .

[7]  Vicenç Puig,et al.  Fault Diagnosis of an Advanced Wind Turbine Benchmark Using Interval-Based ARRs and Observers , 2015, IEEE Transactions on Industrial Electronics.

[8]  Yue Zhao,et al.  Wind turbine fault detection and isolation using support vector machine and a residual-based method , 2013, 2013 American Control Conference.

[9]  Didier Theilliol,et al.  Fault Tolerant Control Design For Polytopic LPV Systems , 2007, Int. J. Appl. Math. Comput. Sci..

[10]  Christophe Aubrun,et al.  Active Fault Tolerant approach for wind turbines , 2011, 2011 International Conference on Communications, Computing and Control Applications (CCCA).

[11]  P. Weber,et al.  Fault-tolerant Power Electronic Converters: Reliability Analysis of Active Power Filter , 2007, 2007 IEEE International Symposium on Industrial Electronics.

[12]  R J Patton,et al.  LPV fault estimation and FTC of a two-link manipulator , 2010, Proceedings of the 2010 American Control Conference.

[13]  Vincent Verdult,et al.  Kernel methods for subspace identification of multivariable LPV and bilinear systems , 2005, Autom..

[14]  Habib Chaouki Ben DJOUDI,et al.  Fault tolerant control of wind turbine via identified fuzzy models prototypes , 2020 .

[15]  Michel Verhaegen,et al.  FAULT DETECTION AND IDENTIFICATION OF ACTUATOR FAULTS USING LINEAR PARAMETER VARYING MODELS , 2005 .

[16]  Vicenç Puig,et al.  Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies , 2010, Int. J. Appl. Math. Comput. Sci..

[17]  Luciano Sánchez,et al.  A Variable Effective Capacity Model for $\hbox{LiFePO}_{4}$ Traction Batteries Using Computational Intelligence Techniques , 2015, IEEE Transactions on Industrial Electronics.

[18]  Christophe Aubrun,et al.  Set-point reconfiguration approach for the FTC of wind turbines , 2011 .

[19]  Nathan van de Wouw,et al.  Reconfigurable control of piecewise affine systems with actuator and sensor faults: Stability and tracking , 2011, Autom..

[20]  F.W. Fuchs,et al.  Current Sensor Fault Detection and Reconfiguration for a Doubly Fed Induction Generator , 2007, 2007 IEEE Power Electronics Specialists Conference.

[21]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[22]  Peter Fogh Odgaard,et al.  A Benchmark Evaluation of Fault Tolerant Wind Turbine Control Concepts , 2015, IEEE Transactions on Control Systems Technology.

[23]  Sami Othman,et al.  Support Vector Machines for Fault Detection in Wind Turbines , 2011 .

[24]  Peter Fogh Odgaard,et al.  Fault-Tolerant Control of Wind Turbines: A Benchmark Model , 2009, IEEE Transactions on Control Systems Technology.

[25]  R. J. Patton,et al.  Wind turbine power maximisation based on adaptive sensor fault tolerant sliding mode control , 2012, 2012 20th Mediterranean Conference on Control & Automation (MED).

[26]  Michel Verhaegen,et al.  Subspace IDentification of MIMO LPV systems: The PBSID approach , 2008, 2008 47th IEEE Conference on Decision and Control.

[27]  Guang-Hong Yang,et al.  Switching fault-tolerant control for a class of nonlinear systems with actuator faults , 2013, 2013 25th Chinese Control and Decision Conference (CCDC).

[28]  M. Verhaegen,et al.  LPV subspace identification using a novel nuclear norm regularization method , 2011, Proceedings of the 2011 American Control Conference.

[29]  Youmin Zhang,et al.  Fuzzy gain-scheduled active fault-tolerant control of a wind turbine , 2014, J. Frankl. Inst..

[30]  Javad Mohammadpour,et al.  Control of linear parameter varying systems with applications , 2012 .

[31]  Peter Fogh Odgaard,et al.  Fault detection and isolation in wind turbines using support vector machines and observers , 2013, 2013 American Control Conference.

[32]  M. N. Abdelkrim,et al.  Two-level Active Fault Tolerant Control approach , 2011, Eighth International Multi-Conference on Systems, Signals & Devices.

[33]  Abdel Aitouche,et al.  Robust fault tolerant control of DFIG wind energy systems with unknown inputs , 2013 .

[34]  Elkhatib Kamal,et al.  Robust Fuzzy Fault-Tolerant Control of Wind Energy Conversion Systems Subject to Sensor Faults , 2012 .

[35]  Vicenç Puig,et al.  Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter , 2012, Int. J. Appl. Math. Comput. Sci..

[36]  Ron J. Patton,et al.  Fault Tolerant Adaptive Sliding Mode Controller for Wind Turbine Power Maximisation , 2012, ROCOND.

[37]  Michel Verhaegen,et al.  Subspace identification of Bilinear and LPV systems for open- and closed-loop data , 2009, Autom..

[38]  Silvio Simani,et al.  Active actuator fault‐tolerant control of a wind turbine benchmark model , 2014 .