Hyperspectral Image Unmixing With LiDAR Data-Aided Spatial Regularization

Spectral unmixing (SU) methods incorporating the spatial regularizations have demonstrated increasing interest. Although spatial regularizers that promote smoothness of the abundance maps have been widely used, they may overly smooth these maps and, in particular, may not preserve edges present in the hyperspectral image. Existing unmixing methods usually ignore these edge structures or use edge information derived from the hyperspectral image itself. However, this information may be affected by the large amounts of noise or variations in illumination, leading to erroneous spatial information incorporated into the unmixing procedure. This paper proposes a simple yet powerful SU framework that incorporates external data [i.e. light detection and ranging (LiDAR) data]. The LiDAR measurements can be easily exploited to adjust the standard spatial regularizations applied to the unmixing process. The proposed framework is rigorously evaluated using two simulated data sets and a real hyperspectral image. It is compared with methods that rely on spatial information derived from a hyperspectral image. The results show that the proposed framework can provide better abundance estimates and, more specifically, can significantly improve the abundance estimates for the pixels affected by shadows.

[1]  Cédric Richard,et al.  A graph Laplacian regularization for hyperspectral data unmixing , 2014, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  Jocelyn Chanussot,et al.  Blind Hyperspectral Unmixing Using an Extended Linear Mixing Model to Address Spectral Variability , 2016, IEEE Transactions on Image Processing.

[3]  Jon Atli Benediktsson,et al.  Adaptive Markov Random Fields for Joint Unmixing and Segmentation of Hyperspectral Images , 2013, IEEE Transactions on Image Processing.

[4]  Jungho Im,et al.  Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification , 2010 .

[5]  Jean-Yves Tourneret,et al.  Hyperspectral Unmixing With Spectral Variability Using a Perturbed Linear Mixing Model , 2015, IEEE Transactions on Signal Processing.

[6]  Richard J. Murphy,et al.  Incorporating Spatial Information and Endmember Variability Into Unmixing Analyses to Improve Abundance Estimates , 2016, IEEE Transactions on Image Processing.

[7]  Tülay Adali,et al.  Spectral–Spatial Classification of Hyperspectral Images Using ICA and Edge-Preserving Filter via an Ensemble Strategy , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Lianru Gao,et al.  Edge-constrained Markov random field classification by integrating hyperspectral image with LiDAR data over urban areas , 2014 .

[9]  José M. Bioucas-Dias,et al.  A variable splitting augmented Lagrangian approach to linear spectral unmixing , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[10]  Alfred O. Hero,et al.  Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery , 2009, IEEE Transactions on Signal Processing.

[11]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[12]  C. L. Philip Chen,et al.  Reweighted Sparse Regression for Hyperspectral Unmixing , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Richard J. Murphy,et al.  A Novel Endmember Bundle Extraction and Clustering Approach for Capturing Spectral Variability Within Endmember Classes , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Liangpei Zhang,et al.  Total Variation Regularized Reweighted Sparse Nonnegative Matrix Factorization for Hyperspectral Unmixing , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Alfonso Fernández-Manso,et al.  Spectral unmixing , 2012 .

[16]  Jon Atli Benediktsson,et al.  SVM- and MRF-Based Method for Accurate Classification of Hyperspectral Images , 2010, IEEE Geoscience and Remote Sensing Letters.

[17]  Liangpei Zhang,et al.  Non-Local Sparse Unmixing for Hyperspectral Remote Sensing Imagery , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[18]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[19]  Alfred O. Hero,et al.  Nonlinear Unmixing of Hyperspectral Images: Models and Algorithms , 2013, IEEE Signal Processing Magazine.

[20]  Jean-Yves Tourneret,et al.  Enhancing Hyperspectral Image Unmixing With Spatial Correlations , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Jean-Yves Tourneret,et al.  Online Unmixing of Multitemporal Hyperspectral Images Accounting for Spectral Variability , 2015, IEEE Transactions on Image Processing.

[22]  Jonathon J. Donager,et al.  UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA , 2017 .

[23]  Liangpei Zhang,et al.  An Improved Nonlocal Sparse Unmixing Algorithm for Hyperspectral Imagery , 2015, IEEE Geoscience and Remote Sensing Letters.

[24]  Lawrence A. Corp,et al.  NASA Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager , 2013, Remote. Sens..

[25]  Jon Atli Benediktsson,et al.  Spectral–Spatial Hyperspectral Image Classification With Edge-Preserving Filtering , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Sebastian Bauer,et al.  Spatial regularization for the unmixing of hyperspectral images , 2015, Optical Metrology.

[27]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[28]  Fernando Puente León,et al.  Robustness Improvement of Hyperspectral Image Unmixing by Spatial Second-Order Regularization , 2014, IEEE Transactions on Image Processing.

[29]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[30]  Antonio J. Plaza,et al.  Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[31]  K. C. Ho,et al.  Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing , 2014, IEEE Signal Processing Magazine.

[32]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[33]  Richard J. Murphy,et al.  A Novel Spectral Unmixing Method Incorporating Spectral Variability Within Endmember Classes , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Chunxia Zhang,et al.  Enhancing Spectral Unmixing by Local Neighborhood Weights , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  Sildomar T. Monteiro,et al.  Evaluating Classification Techniques for Mapping Vertical Geology Using Field-Based Hyperspectral Sensors , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Guillermo Sapiro,et al.  Sparse modeling for hyperspectral imagery with LiDAR data fusion for subpixel mapping , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[37]  Jie Chen,et al.  Nonlinear Estimation of Material Abundances in Hyperspectral Images With $\ell_{1}$-Norm Spatial Regularization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Paul D. Gader,et al.  A Spatial Compositional Model for Linear Unmixing and Endmember Uncertainty Estimation , 2015, IEEE Transactions on Image Processing.

[39]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[40]  Paul D. Gader,et al.  A Review of Nonlinear Hyperspectral Unmixing Methods , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[41]  Le Wang,et al.  Incorporating spatial information in spectral unmixing: A review , 2014 .

[42]  Guillermo Sapiro,et al.  Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.