Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains

Background Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.

Andreas Tauch | Amjad Ali | Jan Baumbach | Adhemar Zerlotini | Vasco Azevedo | Francisco P. Lobo | Anderson Miyoshi | Glória R. Franco | Priscila Grynberg | José Miguel Ortega | Vinicius A. C. Abreu | Rommel T. J. Ramos | Vívian D'Afonseca | Anderson J. Dominitini | Jerônimo C. Ruiz | Artur Silva | Robert J. Moore | Luiz R. Goulart | J. M. Ortega | É. M. Rabelo | G. Franco | J. McCulloch | J. Baumbach | A. Tauch | S. Brommonschenkel | E. Trost | J. Ruiz | Amjad Ali | A. Miyoshi | V. Azevedo | I. Castro | G. Oliveira | A. Zerlotini | S. Almeida | S. Soares | P. Grynberg | N. Carneiro | S. Teixeira | C. Vieira | M. Schneider | F. Lobo | Artur Silva | J. Ferro | R. Ramos | Anderson R Santos | A. Pinto | L. Goulart | F. Dorella | Vinícius A. C. Abreu | L. Cerdeira | L. Paiva | C. T. Guimarães | N. Seyffert | A. F. Costa | R. Meyer | S. Oliveira | V. D'Afonseca | A. A. C. M. Rocha | D. O. Lopes | L. Pacheco | M. P. Costa | M. Z. Turk | P. M. Moraes | Thiago L. P. Castro | D. Resende | E. M. Coser | L. M. Oliveira | A. Pedrosa | Daniel Bartholomeu | D. M. Oliveira | F. Santos | S. Dias | J. Almeida | M. Ferro | Paula R. K. Falcão | Carlos U. Vieira | Luis G. C. Pacheco | Núbia Seyffert | Siomar C. Soares | Eva Trost | Anderson R. Santos | Anne C. Pinto | Fernanda A. Dorella | Maria Paula C. Schneider | Sintia S. Almeida | Santuza M. R. Teixeira | Ieso M. Castro | Aryanne A. M. C. Rocha | Débora O. Lopes | Marcília P. Costa | Meritxell Z. Turk | Pablo M. R. O. Moraes | John McCulloch | Louise T. Cerdeira | Anderson Dominitini | Daniela M. Resende | Elisângela M. Coser | Luciana M. Oliveira | André L. Pedrosa | Cláudia T. Guimarães | Daniela C. Bartholomeu | Diana M. Oliveira | Fabrício R. Santos | Élida Mara Rabelo | Ana Flávia Costa | Sílvia Regina Costa Dias | Jesus A. Ferro | Luciano V. Paiva | Juliana Franco Almeida | Maria Inês T. Ferro | Newton P. Carneiro | Sérgio Brommonschenkel | Sérgio C. Oliveira | Roberto Meyer | Guilherme C. Oliveira | L. V. Paiva | V. D’Afonseca | D. M. Resende | P. Moraes | L. G. Pacheco | Sintia Almeida | R. Moore | M. Costa | M. Turk | Eva Trost

[1]  D. Dymock,et al.  Characterization and expression of adjacent proline iminopeptidase and aspartase genes from Eikenella corrodens. , 2003, Oral microbiology and immunology.

[2]  W. Donachie,et al.  Characterization of United Kingdom Isolates ofCorynebacterium pseudotuberculosis Using Pulsed-Field Gel Electrophoresis , 2000, Journal of Clinical Microbiology.

[3]  E. Boedeker,et al.  A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Eggleton Dg,et al.  Immunisation against ovine caseous lymphadenitis: comparison of Corynebacterium pseudotuberculosis vaccines with and without bacterial cells. , 1991 .

[5]  B. Gicquel,et al.  An essential role for phoP in Mycobacterium tuberculosis virulence , 2001, Molecular microbiology.

[6]  C. Friedman,et al.  Using BLAST for identifying gene and protein names in journal articles. , 2000, Gene.

[7]  Peter D. Karp,et al.  The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2007, Nucleic Acids Res..

[8]  Matthew Berriman,et al.  ACT: the Artemis comparison tool , 2005, Bioinform..

[9]  P. Berche,et al.  Corynebacterium pseudotuberculosis necrotizing lymphadenitis in a twelve-year-old patient. , 2006, The Pediatric infectious disease journal.

[10]  J. L. Ayers Caseous lymphadenitis in goats and sheep: a review of diagnosis, pathogenesis, and immunity. , 1977, Journal of the American Veterinary Medical Association.

[11]  Mazen Saleh,et al.  Bioinformatic Comparison of Bacterial Secretomes , 2009, Genom. Proteom. Bioinform..

[12]  M. Benzarti,et al.  Contribution a l'étude épidemiologique et clinique de la lymphadenite caseeuse chez les ovins , 2002 .

[13]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[14]  S. F. Alves,et al.  Synergistic hemolysis-inhibition titers associated with caseous lymphadenitis in a slaughterhouse survey of goats and sheep in Northeastern Brazil. , 1987, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[15]  Carsten Damm,et al.  Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models , 2006, BMC Bioinformatics.

[16]  Steven AR Webb,et al.  Bench-to-bedside review: Bacterial virulence and subversion of host defences , 2008, Critical care.

[17]  M. Fontaine,et al.  Molecular genotyping of multinational ovine and caprine Corynebacterium pseudotuberculosis isolates using pulsed-field gel electrophoresis. , 2007, Veterinary research.

[18]  F. Listoni,et al.  Punção aspirativa com agulha fina no diagnóstico do Corynebacterium pseudotuberculosis na linfadenite caseosa caprina , 2001 .

[19]  I. Smith,et al.  Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence , 2003, Clinical Microbiology Reviews.

[20]  E. Tajkhorshid,et al.  Simulation of spontaneous substrate binding revealing the binding pathway and mechanism and initial conformational response of GlpT. , 2010, Biochemistry.

[21]  Joachim Kopka,et al.  A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism , 2008, PloS one.

[22]  Ulrich Dobrindt,et al.  Genomic islands in pathogenic and environmental microorganisms , 2004, Nature Reviews Microbiology.

[23]  D. Price,et al.  Tricks with tetramers: how to get the most from multimeric peptide–MHC , 2009, Immunology.

[24]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[25]  H. Hayashi,et al.  An upstream regulatory sequence stimulates expression of the perfringolysin O gene of Clostridium perfringens , 1991, Infection and immunity.

[26]  S. Schönert,et al.  Identification and Enzymatic Characterization of the Maltose-Inducible α-Glucosidase MalL (Sucrase-Isomaltase-Maltase) of Bacillus subtilis , 1998, Journal of bacteriology.

[27]  B. Eikmanns,et al.  l-Valine Production during Growth of Pyruvate Dehydrogenase Complex- Deficient Corynebacterium glutamicum in the Presence of Ethanol or by Inactivation of the Transcriptional Regulator SugR , 2008, Applied and Environmental Microbiology.

[28]  S. Newton,et al.  Ferric Enterobactin Binding and Utilization byNeisseria gonorrhoeae , 1999, Journal of bacteriology.

[29]  E. Gormley,et al.  Immunological responses and protective immunity against tuberculosis conferred by vaccination of Balb/C mice with the attenuated Mycobacterium tuberculosis (phoP) SO2 strain , 2006, Clinical and experimental immunology.

[30]  Michael Bott,et al.  Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation , 2007, Applied Microbiology and Biotechnology.

[31]  A. Goesmann,et al.  Complete Genome Sequence and Analysis of the Multiresistant Nosocomial Pathogen Corynebacterium jeikeium K411, a Lipid-Requiring Bacterium of the Human Skin Flora , 2005, Journal of bacteriology.

[32]  S. Okabe,et al.  Induction of Multidrug Resistance Mechanism in Escherichia coli Biofilms by Interplay between Tetracycline and Ampicillin Resistance Genes , 2009, Antimicrobial Agents and Chemotherapy.

[33]  D. Minty,et al.  Immunisation against ovine caseous lymphadenitis: comparison of Corynebacterium pseudotuberculosis vaccines with and without bacterial cells. , 1991, Australian Veterinary Journal.

[34]  J. McCulloch,et al.  Caseous lymphadenitis in sheep flocks of the state of Minas Gerais, Brazil: Prevalence and management surveys , 2009 .

[35]  M. Behr,et al.  Evolution of the Mycobacterial SigK Regulon , 2008, Journal of bacteriology.

[36]  Christoph Wittmann,et al.  Comparative Metabolic Flux Analysis of Lysine-Producing Corynebacterium glutamicum Cultured on Glucose or Fructose , 2004, Applied and Environmental Microbiology.

[37]  Rachael P. Huntley,et al.  QuickGO: a user tutorial for the web-based Gene Ontology browser , 2009, Database J. Biol. Databases Curation.

[38]  B. Eikmanns,et al.  Genetic and Functional Analysis of the Soluble Oxaloacetate Decarboxylase from Corynebacterium glutamicum , 2010, Journal of bacteriology.

[39]  D. Raoult,et al.  Comparison between rpoB and 16S rRNA Gene Sequencing for Molecular Identification of 168 Clinical Isolates of Corynebacterium , 2005, Journal of Clinical Microbiology.

[40]  J Hacker,et al.  Pathogenicity islands: the tip of the iceberg. , 2001, Microbes and infection.

[41]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[42]  V. Azevedo,et al.  High seroprevalence of caseous lymphadenitis in Brazilian goat herds revealed by Corynebacterium pseudotuberculosis secreted proteins-based ELISA. , 2010, Research in veterinary science.

[43]  P. Gajer,et al.  The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates , 2008, Journal of bacteriology.

[44]  Corynebacterium diphtheriae: a PTS view to the genome. , 2001, Journal of molecular microbiology and biotechnology.

[45]  Garth D. Ehrlich,et al.  Pan-genome analysis provides much higher strain typing resolution than multi-locus sequence typing. , 2010, Microbiology.

[46]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[47]  M. Piontkowski,et al.  Evaluation of a commercially available vaccine against Corynebacterium pseudotuberculosis for use in sheep. , 1998, Journal of the American Veterinary Medical Association.

[48]  D. Raoult,et al.  Massive comparative genomic analysis reveals convergent evolution of specialized bacteria , 2009, Biology Direct.

[49]  V. Azevedo,et al.  A description of genes of Corynebacterium pseudotuberculosis useful in diagnostics and vaccine applications. , 2008, Genetics and molecular research : GMR.

[50]  Adam Zemla,et al.  MvirDB—a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications , 2006, Nucleic Acids Res..

[51]  S. Schönert,et al.  Properties of maltose-inducible alpha-glucosidase MalL (sucrase-isomaltase-maltase) in Bacillus subtilis: evidence for its contribution to maltodextrin utilization. , 1999, Research in microbiology.

[52]  D. Raoult,et al.  rpoB Gene Sequencing for Identification of Corynebacterium Species , 2004, Journal of Clinical Microbiology.

[53]  R. Burne,et al.  Bacterial ureases in infectious diseases. , 2000, Microbes and infection.

[54]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[55]  F. Goñi,et al.  Phospholipase C and sphingomyelinase activities of the Clostridium perfringens alpha-toxin. , 2009, Chemistry and physics of lipids.

[56]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[57]  Alexandros Labrinidis,et al.  Global Transcriptional Response to Spermine, a Component of the Intramacrophage Environment, Reveals Regulation of Francisella Gene Expression through Insertion Sequence Elements , 2009, Journal of bacteriology.

[58]  B. Colonna,et al.  Interference of the CadC regulator in the arginine-dependent acid resistance system of Shigella and enteroinvasive E. coli. , 2010, International journal of medical microbiology : IJMM.

[59]  Peter D Karp,et al.  Using the MetaCyc Pathway Database and the BioCyc Database Collection , 2007, Current protocols in bioinformatics.

[60]  I. A. Merchant,et al.  Veterinary Bacteriology and Virology , 1961 .

[61]  M. Behr,et al.  Mutations in Mycobacterium tuberculosis Rv0444c, the gene encoding anti‐SigK, explain high level expression of MPB70 and MPB83 in Mycobacterium bovis , 2006, Molecular microbiology.

[62]  Andreas Tauch,et al.  Complete Genome Sequence of Corynebacterium pseudotuberculosis I19, a Strain Isolated from a Cow in Israel with Bovine Mastitis , 2010, Journal of bacteriology.

[63]  A. Álvarez‐Ordoñez,et al.  Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium. , 2010, International journal of food microbiology.

[64]  W. Cuevas,et al.  Toxic phospholipases D of Corynebacterium pseudotuberculosis, C. ulcerans and Arcanobacterium haemolyticum: cloning and sequence homology. , 1995, Gene.

[65]  B. Barrell,et al.  Massive gene decay in the leprosy , 2001 .

[66]  R. R. Pinheiro,et al.  Aspectos epidemiológicos da caprinocultura cearense , 2000 .

[67]  A. Miyoshi,et al.  In Vivo Insertional Mutagenesis in Corynebacterium pseudotuberculosis: an Efficient Means To Identify DNA Sequences Encoding Exported Proteins , 2006, Applied and Environmental Microbiology.

[68]  C. Wittmann,et al.  Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry. , 2001, Metabolic engineering.

[69]  T. Yoshioka,et al.  Susceptibility to citrus canker caused by Xanthomonas axonopodis pv. citri depends on the nuclear genome of the host plant , 2008, Journal of General Plant Pathology.

[70]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[71]  J. Arsenault,et al.  Prevalence of and carcass condemnation from maedi-visna, paratuberculosis and caseous lymphadenitis in culled sheep from Quebec, Canada. , 2003, Preventive veterinary medicine.

[72]  L. Messadi,et al.  [Epidemiological and clinical studies of ovine caseous lymphadenitis]. , 2002, Archives de l'Institut Pasteur de Tunis.

[73]  J. Sekiguchi,et al.  Regulation of the glv Operon in Bacillus subtilis: YfiA (GlvR) Is a Positive Regulator of the Operon That Is Repressed through CcpA and cre , 2001, Journal of bacteriology.

[74]  L. Csonka,et al.  Increased expression of Mg2+ transport proteins enhances the survival of Salmonella enterica at high temperature , 2009, Proceedings of the National Academy of Sciences.

[75]  H. Sahm,et al.  Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme , 2003, Archives of Microbiology.

[76]  Li Wang,et al.  A proline iminopeptidase gene upregulated in planta by a LuxR homologue is essential for pathogenicity of Xanthomonas campestris pv. campestris , 2007, Molecular microbiology.

[77]  Watts Gf,et al.  Prevalence of caseous lymphadenitis and usage of caseous lymphadenitis vaccines in sheep flocks. , 2003 .

[78]  S. Morbach,et al.  Osmosensor and Osmoregulator Properties of the Betaine Carrier BetP from Corynebacterium glutamicum in Proteoliposomes* , 2000, The Journal of Biological Chemistry.

[79]  W. Schumann Thermosensors in eubacteria: role and evolution , 2007, Journal of Biosciences.

[80]  Christoph Wittmann,et al.  Metabolic Fluxes in Corynebacterium glutamicum during Lysine Production with Sucrose as Carbon Source , 2004, Applied and Environmental Microbiology.

[81]  A. Miyoshi,et al.  Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. , 2006, Veterinary research.

[82]  L. Corner,et al.  Efficacy of an ovine caseous lymphadenitis vaccine formulated using a genetically inactive form of the Corynebacterium pseudotuberculosis phospholipase D. , 1999, Vaccine.

[83]  C. Soto,et al.  IS6110 Mediates Increased Transcription of the phoP Virulence Gene in a Multidrug-Resistant Clinical Isolate Responsible for Tuberculosis Outbreaks , 2004, Journal of Clinical Microbiology.

[84]  T. Gojobori,et al.  The genome stability in Corynebacterium species due to lack of the recombinational repair system. , 2003, Gene.

[85]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[86]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[87]  Silvia Kuhlmann,et al.  Novel expression hosts for complex secondary metabolite megasynthetases: Production of myxochromide in the thermopilic isolate Corallococcus macrosporus GT-2 , 2009, Microbial cell factories.

[88]  J. Hacker,et al.  Genome plasticity in pathogenic and nonpathogenic enterobacteria. , 2002, Current topics in microbiology and immunology.

[89]  J. Thilsted,et al.  Ovine caseous lymphadenitis: disease prevalence, lesion distribution, and thoracic manifestations in a population of mature culled sheep from western United States. , 1984, American journal of veterinary research.

[90]  K Morikawa,et al.  Crystal Structure and Mutational Analysis of theEscherichia coli Putrescine Receptor , 1998, The Journal of Biological Chemistry.

[91]  V. Loux,et al.  Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram‐positive bacteria , 2009, Proteomics.

[92]  K. Rumbold,et al.  Microbial production host selection for converting second-generation feedstocks into bioproducts , 2009, Microbial cell factories.

[93]  A. Osborn,et al.  R391: a Conjugative Integrating Mosaic Comprised of Phage, Plasmid, and Transposon Elements , 2002, Journal of bacteriology.

[94]  G. Watt,et al.  Prevalence of caseous lymphadenitis and usage of caseous lymphadenitis vaccines in sheep flocks. , 2003, Australian veterinary journal.

[95]  L. Green,et al.  Postal survey of ovine caseous lymphadenitis in the United Kingdom between 1990 and 1999 , 2002, The Veterinary Record.

[96]  Serge Mostowy,et al.  PhoP: A Missing Piece in the Intricate Puzzle of Mycobacterium tuberculosis Virulence , 2008, PloS one.

[97]  J. Stoye,et al.  The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence , 2010, BMC Genomics.

[98]  M. Schmitt,et al.  Analysis of a DtxR-Regulated Iron Transport and Siderophore Biosynthesis Gene Cluster in Corynebacterium diphtheriae , 2005, Journal of bacteriology.

[99]  M. Maguire,et al.  The unique nature of mg2+ channels. , 2008, Physiology.

[100]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.