Marshall-Olkin power-law distributions in length-frequency of entities

[1]  Xiaoshi Zhong,et al.  Time expression recognition and normalization: a survey , 2023, Artificial Intelligence Review.

[2]  Jinde Cao,et al.  An asymptotic state estimator design and synchronization criteria for fractional order time‐delayed genetic regulatory networks , 2022, Asian Journal of Control.

[3]  Muyin Wang,et al.  Is Least-Squares Inaccurate in Fitting Power-Law Distributions? The Criticism is Complete Nonsense , 2022, WWW.

[4]  Alessio Palmero Aprosio,et al.  KIND: an Italian Multi-Domain Dataset for Named Entity Recognition , 2021, LREC.

[5]  R.Raja,et al.  Further Results on Asymptotic And Finite-time Stability Analysis of Fractional-Order Time-Delayed Genetic Regulatory Networks , 2021, Neurocomputing.

[6]  Erik Cambria,et al.  Does semantics aid syntax? An empirical study on named entity recognition and classification , 2021, Neural Computing and Applications.

[7]  Jagath C Rajapakse,et al.  Graph embeddings on gene ontology annotations for protein–protein interaction prediction , 2020, BMC Bioinformatics.

[8]  Dimitrina S. Dimitrova,et al.  Computing the Kolmogorov-Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed, or Continuous , 2020, J. Stat. Softw..

[9]  E. C. Wit,et al.  How rare are power-law networks really? , 2020, Proceedings of the Royal Society A.

[10]  Erik Cambria,et al.  Extracting Time Expressions and Named Entities with Constituent-Based Tagging Schemes , 2020, Cognitive Computation.

[11]  Xuan Wang,et al.  Comprehensive Named Entity Recognition on CORD-19 with Distant or Weak Supervision , 2020, ArXiv.

[12]  Jagath C. Rajapakse,et al.  GO2Vec: transforming GO terms and proteins to vector representations via graph embeddings , 2019, BMC Genomics.

[13]  Jagath C. Rajapakse,et al.  Predicting Missing and Spurious Protein-Protein Interactions Using Graph Embeddings on GO Annotation Graph , 2019, 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[14]  Stefan Daniel Dumitrescu,et al.  Introducing RONEC - the Romanian Named Entity Corpus , 2019, LREC.

[15]  Vikram Krishnamurthy,et al.  Maximum Likelihood Estimation of Power-law Degree Distributions via Friendship Paradox-based Sampling , 2019, ACM Trans. Knowl. Discov. Data.

[16]  David Bamman,et al.  An annotated dataset of literary entities , 2019, North American Chapter of the Association for Computational Linguistics.

[17]  Martin Gerlach,et al.  Testing Statistical Laws in Complex Systems. , 2019, Physical review letters.

[18]  Jinde Cao,et al.  Stability and synchronization criteria for fractional order competitive neural networks with time delays: An asymptotic expansion of Mittag Leffler function , 2019, J. Frankl. Inst..

[19]  Steven Bethard,et al.  A Survey on Recent Advances in Named Entity Recognition from Deep Learning models , 2018, COLING.

[20]  Erik Cambria,et al.  Time Expression Recognition Using a Constituent-based Tagging Scheme , 2018, WWW.

[21]  Sampo Pyysalo,et al.  A neural network multi-task learning approach to biomedical named entity recognition , 2017, BMC Bioinformatics.

[22]  Erik Cambria,et al.  Time Expression Analysis and Recognition Using Syntactic Token Types and General Heuristic Rules , 2017, ACL.

[23]  Ping Wang,et al.  Zipf’s Law in Passwords , 2017, IEEE Transactions on Information Forensics and Security.

[24]  Kalina Bontcheva,et al.  Broad Twitter Corpus: A Diverse Named Entity Recognition Resource , 2016, COLING.

[25]  Alan Ritter,et al.  Results of the WNUT16 Named Entity Recognition Shared Task , 2016, NUT@COLING.

[26]  R. Hanel,et al.  Fitting power-laws in empirical data with estimators that work for all exponents , 2016, PloS one.

[27]  Daniel S. Weld,et al.  Design Challenges for Entity Linking , 2015, TACL.

[28]  Suresh Manandhar,et al.  SemEval-2015 Task 12: Aspect Based Sentiment Analysis , 2015, *SEMEVAL.

[29]  Suresh Manandhar,et al.  SemEval-2014 Task 4: Aspect Based Sentiment Analysis , 2014, *SEMEVAL.

[30]  S. Piantadosi Zipf’s word frequency law in natural language: A critical review and future directions , 2014, Psychonomic Bulletin & Review.

[31]  Hwee Tou Ng,et al.  Towards Robust Linguistic Analysis using OntoNotes , 2013, CoNLL.

[32]  James Pustejovsky,et al.  SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations , 2013, *SEMEVAL.

[33]  A. Casellas,et al.  Marshall-Olkin Extended Zipf Distribution , 2013, 1304.4540.

[34]  Daniel S. Weld,et al.  Fine-Grained Entity Recognition , 2012, AAAI.

[35]  Bing Liu,et al.  Sentiment Analysis and Opinion Mining , 2012, Synthesis Lectures on Human Language Technologies.

[36]  Oren Etzioni,et al.  Named Entity Recognition in Tweets: An Experimental Study , 2011, EMNLP.

[37]  Heng Ji,et al.  Knowledge Base Population: Successful Approaches and Challenges , 2011, ACL.

[38]  David Malone,et al.  Investigating the distribution of password choices , 2011, WWW.

[39]  Robert Dale,et al.  WikiWars: A New Corpus for Research on Temporal Expressions , 2010, EMNLP.

[40]  B. Corominas-Murtra,et al.  Universality of Zipf's law. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[42]  Nigel Collier,et al.  Bio-Medical Entity Extraction using Support Vector Machines , 2005, Artif. Intell. Medicine.

[43]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[44]  J. Weijer,et al.  Word length, sentence length and frequency: Zipf revisited , 2004 .

[45]  Erik F. Tjong Kim Sang,et al.  Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition , 2003, CoNLL.

[46]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[47]  P. Kantor Foundations of Statistical Natural Language Processing , 2001, Information Retrieval.

[48]  James H. Martin,et al.  Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition, 2nd Edition , 2000, Prentice Hall series in artificial intelligence.

[49]  G. Zipf The Psycho-Biology Of Language: AN INTRODUCTION TO DYNAMIC PHILOLOGY , 1999 .

[50]  S. Hochreiter,et al.  Long Short-Term Memory , 1997, Neural Computation.

[51]  Ralph Grishman,et al.  Message Understanding Conference- 6: A Brief History , 1996, COLING.

[52]  Karl-Heinz Best,et al.  Word Length in Old Icelandic Songs and Prose Texts , 1996, J. Quant. Linguistics.

[53]  Wentian Li,et al.  Random texts exhibit Zipf's-law-like word frequency distribution , 1992, IEEE Trans. Inf. Theory.

[54]  C. B. Williams Mendenhall's studies of word-length distribution in the works of Shakespeare and Bacon , 1975 .

[55]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[56]  George A. Miller,et al.  Length-Frequency Statistics for Written English , 1958, Inf. Control..

[57]  G. Miller,et al.  Some effects of intermittent silence. , 1957, The American journal of psychology.

[58]  William C. Wake,et al.  Sentence‐Length Distributions of Greek Authors , 1957 .

[59]  Yuen Ren Chao,et al.  Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology , 1950 .

[60]  N. Smirnov Table for Estimating the Goodness of Fit of Empirical Distributions , 1948 .

[61]  C. B. Williams A note on the statistical analysis of sentence-length as a criterion of literary style , 1940 .

[62]  Jinde Cao,et al.  A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks , 2021, AIMS Mathematics.

[63]  E. Cambria,et al.  Time Expression and Named Entity Recognition , 2021 .

[64]  Xiaoshi Zhong Time expression and named entity analysis and recognition , 2020 .

[65]  Bjarte Johansen,et al.  Named-Entity Recognition for Norwegian , 2019, NODALIDA.

[66]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[67]  A. Valencia,et al.  Overview of the chemical compound and drug name recognition ( CHEMDNER ) task , 2013 .

[68]  John W. Emerson,et al.  Nonparametric Goodness-of-Fit Tests for Discrete Null Distributions , 2011, R J..

[69]  C. B. Williams A NOTE ON THE STATISTICAL ANALYSIS OF SENTENCE-LENGTH AS A CRITERION OF LITERARY STYLE BY , 2008 .

[70]  Satoshi Sekine,et al.  A survey of named entity recognition and classification , 2007 .

[71]  Mark A. Przybocki,et al.  The Automatic Content Extraction (ACE) Program – Tasks, Data, and Evaluation , 2004, LREC.

[72]  James Pustejovsky,et al.  TimeML: Robust Specification of Event and Temporal Expressions in Text , 2003, New Directions in Question Answering.

[73]  Wentian Li,et al.  Zipf's Law everywhere , 2002, Glottometrics.

[74]  T. Takagi,et al.  Toward information extraction: identifying protein names from biological papers. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[75]  Gabriel Altmann,et al.  Towards a Theory of Word Length Distribution , 1994, J. Quant. Linguistics.

[76]  Gabriel Altmann,et al.  Modelling the Distribution of Word Length: Some Methodological Problems , 1993 .

[77]  George Kingsley Zipf,et al.  The Psychobiology of Language , 2022 .