Animal models of T-cell acute lymphoblastic leukemia: mimicking the human disease

Abstract T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities. In the past decade, large-scale genomic analysis has shed new light on providing potentially important oncogenic or tumor suppressive candidates involved in the disease progression. Following in silico analysis, functional studies are usually performed to vigorously investigate the biological roles of candidate genes. For this purpose, animal models faithfully recapitulating the human disease are widely applied to decipher the mechanism underlying T-cell transformation. Conversely, an increased understanding of T-ALL biology, including identification of oncogene NOTCH1, TAL1 and MYC as well as tumor suppressor phosphatase and tensin homolog (PTEN), has significantly improved the development of T-ALL animal models. These progresses have opened opportunities for development of new therapeutic strategy to benefit T-ALL patients. In this review, we particularly summarize the mouse and zebrafish models used in T-ALL research and also the most recent advances from these in vivo studies.

[1]  J. Aster,et al.  The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia , 2017, PloS one.

[2]  J. A. Pulikkan,et al.  RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. , 2017, Blood.

[3]  Cheng Cheng,et al.  THE GENOMIC LANDSCAPE OF PEDIATRIC AND YOUNG ADULT T-LINEAGE ACUTE LYMPHOBLASTIC LEUKEMIA , 2017, Nature Genetics.

[4]  G. Qing,et al.  DEPTOR is a direct NOTCH1 target that promotes cell proliferation and survival in T-cell leukemia , 2017, Oncogene.

[5]  P. Jiang,et al.  Stabilization of Notch1 by the Hsp90 Chaperone is Crucial for T-Cell Leukemogenesis , 2017, Clinical Cancer Research.

[6]  J. Aster,et al.  High selective pressure for Notch1 mutations that induce Myc in T-cell acute lymphoblastic leukemia. , 2016, Blood.

[7]  A. Ferrando,et al.  The genetics and mechanisms of T cell acute lymphoblastic leukaemia , 2016, Nature Reviews Cancer.

[8]  M. Arcangeli,et al.  Stem Cell Leukemia: how a TALented actor can go awry on the hematopoietic stage , 2016, Leukemia.

[9]  N. Eritja,et al.  Edinburgh Research Explorer Deletion of Pten of CD45-expressing cells leads to development of T-cell lymphoblastic lymphoma but not myeloid malignancies , 2014 .

[10]  C. Mullighan,et al.  Acute Lymphoblastic Leukemia in Children. , 2015, The New England journal of medicine.

[11]  R. Deberardinis,et al.  Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia , 2015, Nature Medicine.

[12]  Xiaojun Liu,et al.  Blockade of Programmed Death 1 Augments the Ability of Human T Cells Engineered to Target NY-ESO-1 to Control Tumor Growth after Adoptive Transfer , 2015, Clinical Cancer Research.

[13]  A. Ferrando,et al.  How I treat T-cell acute lymphoblastic leukemia in adults. , 2015, Blood.

[14]  J. Ghysdael,et al.  CXCR4 Is Required for Leukemia-Initiating Cell Activity in T Cell Acute Lymphoblastic Leukemia. , 2015, Cancer cell.

[15]  Clifford Liongue,et al.  Zebrafish as a model for leukemia and other hematopoietic disorders , 2015, Journal of Hematology & Oncology.

[16]  M. Loh,et al.  Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. , 2015, Blood.

[17]  F. Speleman,et al.  Epigenetics in T‐cell acute lymphoblastic leukemia , 2015, Immunological reviews.

[18]  J. Bradner,et al.  Targeting the MYC and PI3K pathways eliminates leukemia-initiating cells in T-cell acute lymphoblastic leukemia. , 2014, Cancer research.

[19]  S. Aerts,et al.  JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model. , 2014, Blood.

[20]  F. Speleman,et al.  MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia , 2014, Leukemia.

[21]  F. Speleman,et al.  MicroRNA-128-3p is a novel oncomiR targeting PHF6 in T-cell acute lymphoblastic leukemia , 2014, Haematologica.

[22]  Rob Pieters,et al.  PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. , 2014, Blood.

[23]  R. Jaenisch,et al.  Contrasting roles for histone 3 lysine 27 demethylases in acute lymphoblastic leukemia , 2014, Nature.

[24]  Charles Lee,et al.  Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation. , 2014, Cancer cell.

[25]  Jason J Burbank,et al.  Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. , 2014, The Journal of clinical investigation.

[26]  Fang Fang,et al.  The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. , 2014, Blood.

[27]  K. Hozumi,et al.  In vivo leukemogenic potential of an interleukin 7 receptor α chain mutant in hematopoietic stem and progenitor cells. , 2013, Blood.

[28]  Andrea Califano,et al.  Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. , 2013, Cancer cell.

[29]  J. Aster,et al.  Differential roles of Kras and Pten in murine leukemogenesis , 2013, Leukemia.

[30]  Stein Aerts,et al.  Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia , 2012, Nature Genetics.

[31]  A. Look,et al.  Inactivation of ribosomal protein L22 promotes transformation by induction of the stemness factor, Lin28B. , 2012, Blood.

[32]  J. Aster,et al.  NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-θ and reactive oxygen species , 2012, Nature Medicine.

[33]  A. Ferrando,et al.  The molecular basis of T cell acute lymphoblastic leukemia. , 2012, The Journal of clinical investigation.

[34]  Richard A Young,et al.  Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. , 2012, Cancer cell.

[35]  S. Ramaswamy,et al.  Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency , 2012, Leukemia.

[36]  L. Tessarollo,et al.  Characterization of transgenic mice expressing cancer‐associated variants of human NOTCH1 , 2012, Genesis.

[37]  Kiran C. Bobba,et al.  The genetic basis of early T-cell precursor acute lymphoblastic leukaemia , 2012, Nature.

[38]  J. Downing,et al.  Shared acquired genomic changes in zebrafish and human T-ALL , 2011, Oncogene.

[39]  A. Ferrando,et al.  Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia , 2011, Nature Genetics.

[40]  J. Aster,et al.  Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL. , 2011, Blood.

[41]  D. Neuberg,et al.  Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia , 2011, The Journal of experimental medicine.

[42]  A. Capobianco,et al.  Notch is oncogenic dominant in T-cell acute lymphoblastic leukemia. , 2011, Blood.

[43]  M. Kelliher,et al.  A DNA-binding mutant of TAL1 cooperates with LMO2 to cause T cell leukemia in mice , 2011, Oncogene.

[44]  Roger Patient,et al.  Structure of the leukemia oncogene LMO2: implications for the assembly of a hematopoietic transcription factor complex. , 2011, Blood.

[45]  J. Aster,et al.  Oncogenic activation of the Notch1 gene by deletion of its promoter in Ikaros-deficient T-ALL. , 2010, Blood.

[46]  L. Zon,et al.  T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation. , 2010, Cancer cell.

[47]  William M Gallagher,et al.  Bioluminescent imaging: a critical tool in pre‐clinical oncology research , 2010, The Journal of pathology.

[48]  G. Zheng,et al.  Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. , 2009, Blood.

[49]  L. Chin,et al.  High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. , 2009, Blood.

[50]  S. Tripp,et al.  Heritable T Cell Malignancy Models Established in a Zebrafish Phenotypic Screen , 2009, Leukemia.

[51]  J. Aster,et al.  Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. , 2008, The Journal of clinical investigation.

[52]  M. Varella‐Garcia,et al.  Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation , 2008, Nature.

[53]  E. Clappier,et al.  Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia , 2008, The Journal of experimental medicine.

[54]  C. Pui,et al.  Acute lymphoblastic leukaemia , 2008, The Lancet.

[55]  R. Porcher,et al.  Prognostic factors for leukemic induction failure in children with acute lymphoblastic leukemia and outcome after salvage therapy: the FRALLE 93 study. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[56]  Govind Bhagat,et al.  Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia , 2007, Nature Medicine.

[57]  Rob Pieters,et al.  FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors , 2007, The Journal of experimental medicine.

[58]  A. Ferrando,et al.  The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia , 2007, The Journal of experimental medicine.

[59]  D. Neuberg,et al.  Heat‐shock induction of T‐cell lymphoma/leukaemia in conditional Cre/lox‐regulated transgenic zebrafish , 2007, British journal of haematology.

[60]  Rob Pieters,et al.  Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia , 2007, Nature Genetics.

[61]  P. Currie,et al.  Animal models of human disease: zebrafish swim into view , 2007, Nature Reviews Genetics.

[62]  A. Look,et al.  NOTCH1-induced T-cell leukemia in transgenic zebrafish , 2007, Leukemia.

[63]  M. Bhasin,et al.  Notch1 Contributes to Mouse T-Cell Leukemia by Directly Inducing the Expression of c-myc , 2006, Molecular and Cellular Biology.

[64]  A. Look,et al.  Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia , 2006, Nature Reviews Cancer.

[65]  Tak W. Mak,et al.  Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis , 2006, Nature Reviews Cancer.

[66]  D. Felsher,et al.  Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. , 2005, Cancer research.

[67]  Teresa Palomero,et al.  Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. , 2005, Blood.

[68]  L. Zon,et al.  The zebrafish: a new model of T-cell and thymic development , 2005, Nature Reviews Immunology.

[69]  M. Kotb,et al.  Human Lymphoid and Myeloid Cell Development in NOD/LtSz-scid IL2Rγnull Mice Engrafted with Mobilized Human Hemopoietic Stem Cells 12 , 2004, The Journal of Immunology.

[70]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[71]  J. O'neil,et al.  TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. , 2004, Cancer cell.

[72]  R. DePinho,et al.  Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. , 2004, Cancer cell.

[73]  X. Shu,et al.  RAS oncogene mutations and outcome of therapy for childhood acute lymphoblastic leukemia , 2004, Leukemia.

[74]  R. Gelber,et al.  Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[75]  David M Langenau,et al.  Myc-Induced T Cell Leukemia in Transgenic Zebrafish , 2003, Science.

[76]  Mamoru Ito,et al.  NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. , 2002, Blood.

[77]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[78]  J. O'neil,et al.  The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice , 2001, Oncogene.

[79]  U. Lendahl,et al.  Constitutive activation of NF‐κB and T‐cell leukemia/lymphoma in Notch3 transgenic mice , 2000, The EMBO journal.

[80]  M. Diccianni,et al.  Ras activation in normal white blood cells and childhood acute lymphoblastic leukemia. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[81]  P. Leder,et al.  Tal‐1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. , 1996, The EMBO journal.

[82]  J. Sklar,et al.  Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles , 1996, The Journal of experimental medicine.

[83]  T. Hawley,et al.  Hematopoietic transforming potential of activated ras in chimeric mice. , 1995, Oncogene.

[84]  F. Sigaux,et al.  Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. , 1994, Blood.

[85]  J. Sklar,et al.  TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms , 1991, Cell.

[86]  J. A. Pulikkan,et al.  RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. , 2017, Blood.

[87]  A. Look,et al.  Zebrafish models of leukemia. , 2017, Methods in cell biology.

[88]  A. Gutierrez,et al.  Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights. , 2016, Advances in experimental medicine and biology.

[89]  Konstantinos J. Mavrakis,et al.  The H 3 K 27 me 3 demethylase UTX is a gender-speci fi c tumor suppressor in T-cell acute lymphoblastic leukemia , 2014 .

[90]  J. Aster,et al.  Notch 1 inhibition targets the leukemia-initiating cells in a Tal 1 / Lmo 2 mouse model of TALL * , 2011 .

[91]  J. Aster,et al.  Leukemia-associated NOTCH 1 alleles are weak tumor initiators but accelerate Kras – initiated leukemia , 2008 .

[92]  C. Croce,et al.  Advances in Brief T-Cell . . directed TAL-1 Expression Induces T-Cell Malignancies in Transgenic Mice ' , 2006 .

[93]  M. Fortini,et al.  Notch signaling. , 1995, Science.