Modeling of CO2 capture via chemical absorption processes − An extensive literature review

Climate change mainly due to the release of greenhouse gases into the atmosphere is getting alarming dimensions. CO2 capture from point source emissions is a promising solution, lately receiving significant attention. In particular, chemical absorption of CO2 from flue gases using aqueous solvents (mainly alkanolamines) is a well-known process, studied in detail. Modern research aims to optimize this process, maximizing the absorption rates and minimizing the parasitic but not negligible energy requirements for solvent regeneration. This type of analysis requires considering the coupling of the absorption with the power plant operation or other source of CO2. The operation fluctuations and disturbances, such as load variations or start-up mode have to be reflected in the process modeling, justifying the emerging need for dynamic modeling. However, dynamic analysis is not always realizable as dynamic experimental data are scarce in order to enable accurate model validation. Thus, steady state models are still convenient for certain cases. The current work provides a short description of the main modeling approaches followed and enlists representative steady state and dynamic models found in literature. Finally, a primary comparison is performed for some comparable models that used the same set of experimental data for model validation.

[1]  B. Metz IPCC special report on carbon dioxide capture and storage , 2005 .

[2]  M. Mercedes Maroto-Valer,et al.  An overview of current status of carbon dioxide capture and storage technologies , 2014 .

[3]  Gary T. Rochelle,et al.  Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation , 1989 .

[4]  Mai Bui,et al.  Dynamic modelling and optimisation of flexible operation in post-combustion CO2 capture plants - A review , 2014, Comput. Chem. Eng..

[5]  Ioannis G. Economou,et al.  Evaluation of Statistical Associating Fluid Theory (SAFT) and Perturbed Chain-SAFT Equations of State for the Calculation of Thermodynamic Derivative Properties of Fluids Related to Carbon Capture and Sequestration , 2011 .

[6]  H. Yeung,et al.  Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants , 2010 .

[7]  Gary T. Rochelle,et al.  Rate-Based Process Modeling Study of CO2 Capture with Aqueous Monoethanolamine Solution , 2009 .

[8]  D. Savage,et al.  Gas treating with chemical solvents , 1983 .

[9]  Eric Croiset,et al.  Dynamic Simulation of MEA Absorption Processes for CO2 Capture from Fossil Fuel Power Plant , 2011 .

[10]  R. I. Christodoulaki,et al.  Thermodynamic analysis of a counter flow adiabatic dehumidifier with different liquid desiccant materials , 2013 .

[11]  Meihong Wang,et al.  Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants , 2009 .

[12]  Graeme Puxty,et al.  A new rate based absorber and desorber modelling tool , 2013 .

[13]  Erling Halfdan Stenby,et al.  Modeling of CO2 absorber using an AMP solution , 2006 .

[14]  Nilay Shah,et al.  Dynamic modelling and analysis of an amine-based post-combustion CO2 capture absorption column , 2013 .

[15]  Axel Meisen,et al.  Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor—II: Experimental results and parameter estimation , 2006 .

[16]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[17]  Bernt Lie,et al.  Amine based CO2 capture plant: Dynamic modeling and simulations , 2013 .

[18]  M. Michelsen,et al.  A Model for Estimating CO~2 Solubility in Aqueous Alkanolamines , 2005 .

[19]  Gary T. Rochelle,et al.  Effects of the Temperature Bulge in CO2 Absorption from Flue Gas by Aqueous Monoethanolamine , 2008 .

[20]  H. M. Kvamsdal,et al.  Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture , 2009 .

[21]  James R. Fair,et al.  Generalized correlation for mass transfer in packed distillation columns , 1982 .

[22]  Teerawat Sema,et al.  Part 5a: Solvent chemistry: NMR analysis and studies for amine–CO2–H2O systems with vapor–liquid equilibrium modeling for CO2 capture processes , 2012 .

[23]  S. Shahhosseini,et al.  Nonequilibrium dynamic modeling of carbon dioxide absorption by partially carbonated ammonia solutions , 2009 .

[24]  Anton Friedl,et al.  Modelling selective H2S absorption and desorption in an aqueous MDEA-solution using a rate-based non-equilibrium approach , 2004 .

[25]  Magne Hillestad,et al.  Dynamic Modeling of Post-combustion CO2 Capture Using Amines - A Review. , 2012 .

[26]  Eugeny Y. Kenig,et al.  Rigorous dynamic modelling of complex reactive absorption processes , 1999 .

[27]  R. Higbie,et al.  The Rate of Absorption of a Pure Gas into a Still Liquid during Short Periods of Exposure , 1935 .

[28]  E. Silva Modelling of activity coefficients using computational chemistry , 2002 .

[29]  Axel Meisen,et al.  CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column , 1992 .

[30]  Steven Pruess,et al.  A rate-based model for the design of gas absorbers for the removal of CO2 and H2S using aqueous solutions of MEA and DEA , 2001 .

[31]  D. V. Krevelen,et al.  Kinetics of gas‐liquid reactions part I. General theory , 2010 .

[32]  R. I. Christodoulaki,et al.  Critical review of coupled heat and mass transfer models for a liquid desiccant adiabatic dehumidifier and regenerator , 2014 .

[33]  Giovanni Astarita,et al.  Mass Transfer With Chemical Reaction , 1967 .

[34]  Yincheng Guo,et al.  Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution , 2013 .

[35]  Zeng Ming,et al.  CCS technology development in China: Status, problems and countermeasures—Based on SWOT analysis , 2014 .

[36]  H. M. Park Reduced-order modeling of carbon dioxide absorption and desorption with potassium carbonate promoted by piperazine , 2014 .

[37]  G. Puxty,et al.  Describing CO2 mass transfer in amine/ammonia mixtures — No shuttle mechanism required , 2011 .

[38]  Axel Meisen,et al.  Simulation of pilot plant and industrial CO2-MEA absorbers , 1993 .

[39]  Jozsef Gaspar,et al.  Dynamic modeling and absorption capacity assessment of CO2 capture process , 2012 .

[40]  Sergio Mussati,et al.  Post-combustion CO2 capture process: Equilibrium stage mathematical model of the chemical absorption of CO2 into monoethanolamine (MEA) aqueous solution , 2011 .

[41]  J. Plaza,et al.  Modeling of carbon dioxide absorption using aqueous monoethanolamine, piperazine and promoted potassium carbonate , 2012 .

[42]  Eugeny Y. Kenig,et al.  CO2‐Alkanolamine Reaction Kinetics: A Review of Recent Studies , 2007 .

[43]  Eugeny Y. Kenig,et al.  On the modelling and simulation of sour gas absorption by aqueous amine solutions , 2003 .

[44]  Gary T. Rochelle,et al.  Modeling CO2 absorption into concentrated aqueous monoethanolamine and piperazine , 2011 .

[45]  Bingtao Zhao,et al.  Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review , 2012 .

[46]  Ruth Nataly Echevarria Huaman,et al.  Energy related CO2 emissions and the progress on CCS projects: A review , 2014 .

[47]  Q. Guo,et al.  Simulations of chemical absorption in pilot-scale and industrial-scale packed columns by computational mass transfer , 2006 .

[48]  Thomas F. Edgar,et al.  A comparison of steady-state equilibrium and rate-based models for packed reactive distillation columns , 2002 .

[49]  Stefano Freguia,et al.  Modeling of CO2 capture by aqueous monoethanolamine , 2003 .

[50]  James R. Fair,et al.  Mass transfer in gauze packings , 1985 .

[51]  Ali Zakeri,et al.  A comparison of different parameter correlation models and the validation of an MEA-based absorber model , 2011 .

[52]  R. H. Perry,et al.  Kinetics of Gas-Liquid Reactions , 1953 .

[53]  Finn Andrew Tobiesen,et al.  Experimental validation of a rigorous desorber model for CO2 post-combustion capture , 2008 .

[54]  Reinhard Billet,et al.  Predicting mass transfer in packed columns , 1993 .

[55]  Arvo Lannus,et al.  Gas‐Liquid Reactions , 1970 .

[56]  Amr Henni,et al.  Analysis of reaction kinetics of CO2 absorption into a novel reactive 4-diethylamino-2-butanol solvent , 2012 .

[57]  Eugeny Y. Kenig,et al.  Reactive absorption: Optimal process design via optimal modelling , 2001 .

[58]  Amornvadee Veawab,et al.  Mathematical modelling of mass-transfer and hydrodynamics in CO2 absorbers packed with structured packings , 2003 .

[59]  Herbert I. Britt,et al.  Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems , 1982 .

[60]  S. Asai,et al.  The kinetics of reactions of carbon dioxide with monoethanolamine, diethanolamine and triethanolamine by a rapid mixing method , 1977 .

[61]  R. Idem,et al.  Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions , 2003 .

[62]  Hiroshi Takeuchi,et al.  MASS TRANSFER COEFFICIENTS BETWEEN GAS AND LIQUID PHASES IN PACKED COLUMNS , 1968 .

[63]  L. Pellegrini,et al.  Improved rate-based modeling of the process of CO2 capture with PZ solution , 2015 .

[64]  Lawrence B. Evans,et al.  A local composition model for the excess Gibbs energy of aqueous electrolyte systems , 1986 .

[65]  O. Levenspiel Chemical Reaction Engineering , 1972 .

[66]  Hallvard F. Svendsen,et al.  Modeling and Experimental Study of Carbon Dioxide Absorption in Aqueous Alkanolamine Solutions Using a Membrane Contactor , 2004 .

[67]  Tariq Mahmud,et al.  Modelling reactive absorption of CO2 in packed columns for post-combustion carbon capture applications , 2011 .

[68]  J. Stichlmair Determination of Mass Transfer Parameters by Means of Chemical Absorption , 2002 .

[69]  S. Bandyopadhyay,et al.  Solubility and diffusivity of nitrous oxide and carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol , 1993 .

[70]  Li Chunxi,et al.  Representation of CO2 and H2S solubility in aqueous MDEA solutions using an electrolyte equation of state , 2000 .

[71]  Eric Croiset,et al.  Dynamic modelling and control of MEA absorption processes for CO2 capture from power plants , 2014 .

[72]  Amornvadee Veawab,et al.  Reaction rate of CO2 in aqueous MEA-AMP solution: Experiment and modeling , 2009 .

[73]  Chau-Chyun Chen,et al.  Generalized electrolyte‐NRTL model for mixed‐solvent electrolyte systems , 2004 .

[74]  Leigh Wardhaugh,et al.  Development of a rate-based model for CO2 absorption using aqueous NH3 in a packed column , 2013 .

[75]  Ahmed Aboudheir,et al.  Rigorous Model for Predicting the Behavior of CO2 Absorption into AMP in Packed-Bed Absorption Columns , 2006 .

[76]  A. Górak,et al.  Determination of gas–liquid reaction kinetics with a stirred cell reactor , 2003 .

[77]  R. I. Christodoulaki,et al.  Thermodynamic Analysis of an Internally Heated Regenerator Using Three Liquid Desiccant Solutions , 2012 .