Continuous-time random walk and parametric subordination in fractional diffusion

The well-scaled transition to the diffusion limit in the framework of the theory of continuous-time random walk (CTRW) is presented starting from its representation as an infinite series that points out the subordinated character of the CTRW itself. We treat the CTRW as a combination of a random walk on the axis of physical time with a random walk in space, both walks happening in discrete operational time. In the continuum limit, we obtain a (generally non-Markovian) diffusion process governed by a space-time fractional diffusion equation. The essential assumption is that the probabilities for waiting times and jump-widths behave asymptotically like powers with negative exponents related to the orders of the fractional derivatives. By what we call parametric subordination, applied to a combination of a Markov process with a positively oriented Levy process, we generate and display sample paths for some special cases.

[1]  E. Montroll,et al.  CHAPTER 2 – On an Enriched Collection of Stochastic Processes* , 1979 .

[2]  Francesco Mainardi,et al.  Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk , 2007, 0709.3990.

[3]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[4]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[5]  F. Mainardi,et al.  Fox H functions in fractional diffusion , 2005 .

[6]  E. Montroll Random walks on lattices , 1969 .

[7]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .

[8]  Riccardo Mannella,et al.  A Dynamical Approach to Fractional Brownian Motion , 1993, chao-dyn/9308004.

[9]  Alexander I. Saichev,et al.  Fractional kinetic equations: solutions and applications. , 1997, Chaos.

[10]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[11]  Rudolf Hilfer,et al.  EXACT SOLUTIONS FOR A CLASS OF FRACTAL TIME RANDOM WALKS , 1995 .

[12]  P. Lee,et al.  14. Simulation and Chaotic Behaviour of α‐Stable Stochastic Processes , 1995 .

[13]  E. Barkai CTRW pathways to the fractional diffusion equation , 2001, cond-mat/0108024.

[14]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Linear response in complex systems: CTRW and the fractional Fokker-Planck equations , 2001, cond-mat/0107632.

[16]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[17]  A. Stanislavsky Black–Scholes model under subordination , 2003, 1111.3263.

[18]  I. Podlubny Fractional differential equations , 1998 .

[19]  Wojbor A. Woyczyński,et al.  Models of anomalous diffusion: the subdiffusive case , 2005 .

[20]  Numerical and Statistical Approximation of Stochastic Differential Equations with Non-Gaussian Measures , 1996 .

[21]  Evolution, its Fractional Extension and Generalization , 1999, math-ph/9912023.

[22]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[23]  I. Sokolov Lévy flights from a continuous-time process. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Hilfer,et al.  Fractional master equations and fractal time random walks. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[26]  Francesco Mainardi,et al.  Mellin transform and subordination laws in fractional diffusion processes , 2007, math/0702133.

[27]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[28]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[29]  Thermodynamics and fractional Fokker-Planck equations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[31]  V. E. Tarasov,et al.  Fractional Fokker-Planck equation for fractal media. , 2005, Chaos.

[32]  Rudolf Hilfer,et al.  On fractional diffusion and continuous time random walks , 2003 .

[33]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[34]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[35]  Elliott W. Montroll,et al.  Random walks on lattices. IV. Continuous-time walks and influence of absorbing boundaries , 1973 .

[36]  I M Sokolov,et al.  From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.

[37]  Hans-Peter Scheffler,et al.  Governing equations and solutions of anomalous random walk limits. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Mark M. Meerschaert,et al.  STOCHASTIC SOLUTIONS FOR FRACTIONAL CAUCHY PROBLEMS , 2003 .

[39]  Marcin Kotulski,et al.  Asymptotic distributions of continuous-time random walks: A probabilistic approach , 1995 .

[40]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[41]  P. Grigolini,et al.  Fractional calculus as a macroscopic manifestation of randomness , 1999 .

[42]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[43]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[44]  Enrico Scalas,et al.  Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  T. Teichmann,et al.  Harmonic Analysis and the Theory of Probability , 1957, The Mathematical Gazette.

[46]  Michael F. Shlesinger,et al.  Strange kinetics , 1993, Nature.

[47]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[48]  Rudolf Gorenflo,et al.  From Power Laws to Fractional Diffusion: the Direct Way , 2007, 0801.0142.

[49]  Francesco Mainardi,et al.  Simply and multiply scaled diffusion limits for continuous time random walks , 2005 .

[50]  A. Weron,et al.  Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes , 1993 .

[51]  Brian Clark,et al.  Physics in Oil Exploration , 2002 .

[52]  A.A.Stanislavsky Memory Effects and Macroscopic Manifestation of Randomness , 1998 .

[53]  V. Zolotarev,et al.  Chance and Stability, Stable Distributions and Their Applications , 1999 .

[54]  S Bochner SUBORDINATION OF NON-GAUSSIAN STOCHASTIC PROCESSES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[55]  E. Barkai,et al.  Fractional Fokker-Planck equation, solution, and application. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[57]  Radu Balescu,et al.  Statistical dynamics: matter out of equilibrium , 1997 .

[58]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[59]  Igor M. Sokolov,et al.  ANOMALOUS TRANSPORT IN EXTERNAL FIELDS : CONTINUOUS TIME RANDOM WALKS AND FRACTIONAL DIFFUSION EQUATIONS EXTENDED , 1998 .

[60]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[61]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance II: the waiting-time distribution , 2000, cond-mat/0006454.

[62]  I M Sokolov,et al.  Solutions of a class of non-Markovian Fokker-Planck equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  O. Barndorff-Nielsen,et al.  Lévy processes : theory and applications , 2001 .

[64]  Hans-Peter Scheffler,et al.  Stochastic solution of space-time fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Enrico Scalas,et al.  The application of continuous-time random walks in finance and economics , 2006 .

[66]  곽순섭,et al.  Generalized Functions , 2006, Theoretical and Mathematical Physics.