Overview: PCA Models and Issues

Probabilistic cellular automata (PCA) are interacting discrete stochastic dynamical systems used as a modeling tool for a wide range of natural and societal phenomena. Their key features are: (i) a stochastic component that distinguishes them from the well-known cellular automata (CA) algorithms and (ii) an underlying parallelism that sets them apart from purely asynchronous simulation dynamics in statistical mechanics, such as interacting particle systems and Glauber dynamics. On the applied side, these features make PCA an attractive computational framework for high-performance computing, distributed computing, and simulation. Indeed, PCA have been put to good use as part of multiscale simulation frameworks for studying natural systems or large interconnected network structures. On the mathematical side, PCA have a rich mathematical theory that leads to a better understanding of the role of randomness and synchronicity in the evolution of large systems. This book is an attempt to present a wide panorama of the current status of PCA theory and applications. Contributions cover important issues and applications in probability, statistical mechanics, computer science, natural sciences, and dynamical systems. This initial chapter is intended both as a guide and an introduction to the issues discussed in the book. The chapter starts with a general overview of PCA modeling, followed by a presentation of conspicuous applications in different contexts. It closes with a discussion of the links between approaches and perspectives for future developments.

[1]  Tomé,et al.  Probabilistic cellular automaton describing a biological immune system. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Roelof Kuik,et al.  From PCA's to equilibrium systems and back , 1989 .

[3]  Maury Bramson,et al.  SURVIVAL OF ONE-DIMENSIONAL CELLULAR AUTOMATA UNDER RANDOM PERTURBATIONS , 1994 .

[4]  W. Runggaldier,et al.  Large portfolio losses: A dynamic contagion model , 2007, 0704.1348.

[5]  Jean-Baptiste Rouquier Robustesse et émergence dans les systèmes complexes : le modèle des automates cellulaires. (Robustness and emergence in complex systems : the model of cellular automata) , 2008 .

[6]  On a method of Pollaczek , 1973 .

[7]  J. R. G. Mendonça Monte Carlo investigation of the critical behavior of Stavskaya's probabilistic cellular automaton. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Hans Föllmer,et al.  Tail structure of markov chains on infinite product spaces , 1979 .

[9]  Pierre-Yves Louis,et al.  Stationary measures and phase transition for a class of probabilistic cellular automata , 2016, ArXiv.

[10]  M Bartolozzi,et al.  Stochastic cellular automata model for stock market dynamics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  W. Kinzel Phase transitions of cellular automata , 1985 .

[12]  J. Marckert,et al.  Markovianity of the invariant distribution of probabilistic cellular automata on the line , 2014, 1401.5365.

[13]  Paul Manneville,et al.  Cellular Automata and Modeling of Complex Physical Systems , 1989 .

[14]  Eytan Domany,et al.  Equivalence of Cellular Automata to Ising Models and Directed Percolation , 1984 .

[15]  B. Grammaticos,et al.  A cellular automaton model for the migration of glioma cells , 2006, Physical biology.

[16]  Nazim Fatès,et al.  Robustness of the Critical Behaviour in the Stochastic Greenberg-Hastings Cellular Automaton Model , 2011, Int. J. Unconv. Comput..

[17]  Ángel Martín del Rey A Computer Virus Spread Model Based on Cellular Automata on Graphs , 2009, IWANN.

[18]  P. Grassberger Critical behaviour of the Drossel-Schwabl forest fire model , 2002, cond-mat/0202022.

[19]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[20]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[21]  J. R. G. Mendonça,et al.  Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Anna T. Lawniczak,et al.  Individual-based lattice model for spatial spread of epidemics , 2002, nlin/0207048.

[23]  F. Nardi,et al.  Sharp Asymptotics for Stochastic Dynamics with Parallel Updating Rule , 2012 .

[24]  Rémi Monasson,et al.  Statistical mechanics methods and phase transitions in optimization problems , 2001, Theor. Comput. Sci..

[25]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[26]  Jean Mairesse,et al.  A non-ergodic probabilistic cellular automaton with a unique invariant measure , 2010 .

[27]  K. Zuse,et al.  The computing universe , 1982 .

[28]  Christophe Deroulers,et al.  Modeling tumor cell migration: From microscopic to macroscopic models. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Stefania Bandini,et al.  Cellular automata: From a theoretical parallel computational model to its application to complex systems , 2001, Parallel Comput..

[30]  Hydrodynamics of stochastic cellular automata , 1989 .

[31]  Exponential convergence of Toom's probabilistic cellular automata , 1993 .

[32]  R. MacKay,et al.  Phase Diagrams of Majority Voter Probabilistic Cellular Automata , 2015 .

[33]  Bastien Chopard,et al.  Cellular Automata Modeling of Physical Systems , 1999, Encyclopedia of Complexity and Systems Science.

[34]  Michael J. North,et al.  Agent-based modeling and simulation , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[35]  R. Fernández,et al.  Non-Gibbsianness of the invariant measures of non-reversible cellular automata with totally asymmetric noise , 2001, math-ph/0101014.

[36]  Samira El Yacoubi,et al.  Spreadable Probabilistic Cellular Automata Models: An Application in Epidemiology , 2006, ACRI.

[37]  K. Giesecke,et al.  Credit Contagion and Aggregate Losses , 2004 .

[38]  Dominic Scalise,et al.  Emulating cellular automata in chemical reaction–diffusion networks , 2016, Natural Computing.

[39]  D. Foley,et al.  The economy needs agent-based modelling , 2009, Nature.

[40]  J. Mairesse,et al.  Density classification on infinite lattices and trees , 2013 .

[41]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[42]  B. Scoppola,et al.  Fast Mixing for the Low Temperature 2D Ising Model Through Irreversible Parallel Dynamics , 2014, 1407.6650.

[43]  Roeland M. H. Merks,et al.  Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth , 2005, PLoS Comput. Biol..

[44]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[45]  P. Maini,et al.  Multiscale modeling in biology , 2007 .

[46]  A. Deutsch,et al.  Cellular automata as microscopic models of cell migration in heterogeneous environments. , 2008, Current topics in developmental biology.

[47]  Senya Shlosman,et al.  Ergodicity of probabilistic cellular automata: A constructive criterion , 1991 .

[48]  An upper bound for front propagation velocities inside moving populations , 2009, 0901.0586.

[49]  M. Delorme,et al.  Cellular automata : a parallel model , 1999 .

[50]  M. Markus,et al.  On-off intermittency and intermingledlike basins in a granular medium. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Lawrence Gray,et al.  A Reader's Guide to Gacs's “Positive Rates” Paper , 2001 .

[52]  Klaus Sutner,et al.  Computational classification of cellular automata , 2012, Int. J. Gen. Syst..

[53]  M. Katori,et al.  Two-neighbour stochastic cellular automata and their planar lattice duals , 1995 .

[54]  H. Blok,et al.  Synchronous versus asynchronous updating in the ''game of Life'' , 1999 .

[55]  Kerry A Landman,et al.  Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Geoffrey Grinstein,et al.  Can complex structures be generically stable in a noisy world? , 2004, IBM J. Res. Dev..

[57]  J. Lebowitz,et al.  Statistical mechanics of probabilistic cellular automata , 1990 .

[58]  Janko Gravner,et al.  Metastability in the Greenberg-Hastings Model , 1993, patt-sol/9303005.

[59]  Yoshiteru Ishida,et al.  Reverse engineering of spatial patterns in cellular automata , 2008, Artificial Life and Robotics.

[60]  Simon A. Levin,et al.  Stochastic Spatial Models: A User's Guide to Ecological Applications , 1994 .

[61]  Benjamin Hellouin de Menibus,et al.  Self-organization in Cellular Automata: A Particle-Based Approach , 2011, Developments in Language Theory.

[62]  E. Giné,et al.  Some Limit Theorems for Empirical Processes , 1984 .

[63]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[64]  Michel Morvan,et al.  Coalescing Cellular Automata: Synchronization by Common Random Source for Asynchronous Updating , 2009, J. Cell. Autom..

[66]  Szolnoki,et al.  Directed-percolation conjecture for cellular automata. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  Béla Bollobás,et al.  Large deviations for mean field models of probabilistic cellular automata , 2006 .

[68]  Anton Bovier,et al.  Metastability in Glauber Dynamics in the Low-Temperature Limit: Beyond Exponential Asymptotics , 2001 .

[69]  E. Cirillo,et al.  Metastability for a Stochastic Dynamics with a Parallel Heat Bath Updating Rule , 2009, 0907.1796.

[70]  Nicolas Schabanel,et al.  Stochastic Cellular Automata: Correlations, Decidability and Simulations , 2013, Fundam. Informaticae.

[71]  Damien Regnault,et al.  Directed Percolation Arising in Stochastic Cellular Automata Analysis , 2008, MFCS.

[72]  G. Grimmett What Is Percolation , 1989 .

[73]  Bastien Chopard,et al.  Cellular Automata and Lattice Boltzmann Techniques: an Approach to Model and Simulate Complex Systems , 2002, Adv. Complex Syst..

[74]  B. Chopard,et al.  Lattice-Gas Cellular Automaton Models for Biology: From Fluids to Cells , 2010, Acta biotheoretica.

[75]  David Griffeath,et al.  Self-Organization of Random Cellular Automata: Four Snapshots , 1994 .

[76]  Emilio N M Cirillo,et al.  Competitive nucleation in reversible probabilistic cellular automata. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  E. Presutti,et al.  Convergence of stochastic cellular automation to Burger's equation: fluctuations and stability , 1988 .

[78]  E. G. Burkhead,et al.  A Dynamical Study of a Cellular Automata Model of the Spread of HIV in a Lymph Node , 2009, Bulletin of mathematical biology.

[79]  Jarkko Kari Basic Concepts of Cellular Automata , 2012, Handbook of Natural Computing.

[80]  Kuo-Chen Chou,et al.  A probability cellular automaton model for hepatitis B viral infections. , 2006, Biochemical and biophysical research communications.

[81]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[82]  Assaf Naor,et al.  Rigorous location of phase transitions in hard optimization problems , 2005, Nature.

[83]  Elbert E. N. Macau,et al.  Stochastic cellular automata model for wildland fire spread dynamics , 2011 .

[84]  Drossel,et al.  Self-organized critical forest-fire model. , 1992, Physical review letters.

[85]  Stavskaya's Measure Is Weakly Gibbsian , 2006 .

[86]  Matthew J Simpson,et al.  Simulating invasion with cellular automata: connecting cell-scale and population-scale properties. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  Anisotropy Effects in Nucleation for Conservative Dynamics , 2005 .

[88]  K. Abbas,et al.  MODELING INFECTIOUS DISEASES USING GLOBAL STOCHASTIC CELLULAR AUTOMATA , 2005 .

[89]  Karin Johst,et al.  Wildfire, landscape diversity and the Drossel–Schwabl model , 2010 .

[90]  P. Hogeweg Cellular automata as a paradigm for ecological modeling , 1988 .

[91]  Palash Sarkar,et al.  A brief history of cellular automata , 2000, CSUR.

[92]  Francesco Manzo,et al.  Nucleation and growth for the Ising model in $d$ dimensions at very low temperatures , 2011, 1102.1741.

[93]  E. Cirillo,et al.  Relaxation Height in Energy Landscapes: An Application to Multiple Metastable States , 2012, 1205.5647.

[94]  Nazim Fatès Solving the decentralised gathering problem with a reaction–diffusion–chemotaxis scheme , 2010, Swarm Intelligence.

[95]  H. Künsch,et al.  Non reversible stationary measures for infinite interacting particle systems , 1984 .

[96]  Droplet growth for three-dimensional Kawasaki dynamics , 2003 .

[97]  Jérôme Casse Probabilistic cellular automata with general alphabets possessing a Markov chain as an invariant distribution , 2016, Advances in Applied Probability.

[98]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[99]  S. Wolfram Computation theory of cellular automata , 1984 .

[100]  Alfons G. Hoekstra,et al.  Introduction to Modeling of Complex Systems Using Cellular Automata , 2010, Simulating Complex Systems by Cellular Automata.

[102]  A ROSENBLUETH,et al.  The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. , 1946, Archivos del Instituto de Cardiologia de Mexico.

[103]  T. Liggett Stochastic models of interacting systems , 1997 .

[104]  E. Olivieri,et al.  Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics , 2009 .

[105]  Jarkko Kari,et al.  Conservation Laws and Invariant Measures in Surjective Cellular Automata , 2011, Automata.

[106]  Marina Diakonova,et al.  Mathematical Examples of Space-Time Phases , 2011, Int. J. Bifurc. Chaos.

[107]  T. Kriecherbauer,et al.  A pedestrian's view on interacting particle systems, KPZ universality and random matrices , 2008, 0803.2796.

[108]  Esteban Clua,et al.  A new stochastic cellular automata model for traffic flow simulation with drivers' behavior prediction , 2015, J. Comput. Sci..

[109]  Rick Durrett,et al.  Limit theorems for the spread of epidemics and forest fires , 1988 .

[110]  Joel L. Schiff,et al.  Cellular Automata: A Discrete View of the World (Wiley Series in Discrete Mathematics & Optimization) , 2007 .

[111]  Andreas Greven,et al.  Interacting Stochastic Systems , 2005 .

[112]  Béla Bollobás,et al.  Neuropercolation: A Random Cellular Automata Approach to Spatio-temporal Neurodynamics , 2004, ACRI.

[113]  F. Spitzer Interaction of Markov processes , 1970 .

[114]  U. Horst Stochastic cascades, credit contagion, and large portfolio losses , 2007 .

[115]  Péter Gács Reliable Cellular Automata with Self-Organization , 1997, FOCS 1997.

[116]  Cristian Spitoni,et al.  Metastability for Reversible Probabilistic Cellular Automata with Self-Interaction , 2007 .

[117]  Nazim Fatès,et al.  Examples of Fast and Slow Convergence of 2D Asynchronous Cellular Systems , 2008, J. Cell. Autom..

[118]  Carlo Lancia,et al.  Equilibrium and Non-equilibrium Ising Models by Means of PCA , 2013, 1307.2148.

[119]  Massimiliano Viale,et al.  Phase Transitions for the Cavity Approach to the Clique Problem on Random Graphs , 2010, ArXiv.

[120]  R. M. Zorzenon dos Santos,et al.  Dynamics of HIV infection: a cellular automata approach. , 2001, Physical review letters.

[121]  S N Dorogovtsev,et al.  Stochastic cellular automata model of neural networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[122]  Péter Gács,et al.  Reliable computation with cellular automata , 1983, J. Comput. Syst. Sci..

[123]  P. Louis Ergodicity of PCA: equivalence between spatial and temporal mixing conditions , 2004, 1604.07707.

[124]  R. Durrett Oriented Percolation in Two Dimensions , 1984 .

[125]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[126]  Peter Grassberger,et al.  On a self-organized critical forest-fire model , 1993 .

[127]  D. Dawson Synchronous and Asynchronous Reversible Markov Systems(1) , 1975, Canadian Mathematical Bulletin.

[128]  Grinstein,et al.  Statistical mechanics of probabilistic cellular automata. , 1985, Physical review letters.

[129]  Jean Mairesse,et al.  Probabilistic Cellular Automata, Invariant Measures, and Perfect Sampling , 2013, Advances in Applied Probability.

[130]  Thomas Worsch Cellular Automata as Models of Parallel Computation , 2009, Encyclopedia of Complexity and Systems Science.

[131]  R. Ramaswamy,et al.  Scaling behavior in probabilistic neuronal cellular automata. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[132]  J. Bouchaud Crises and Collective Socio-Economic Phenomena: Simple Models and Challenges , 2012, 1209.0453.

[133]  L. Taggi Critical Probabilities and Convergence Time of Percolation Probabilistic Cellular Automata , 2013, 1312.6990.

[134]  W. Just Toom’s Model with Glauber Rates: An Exact Solution Using Elementary Methods , 2010 .

[135]  Lise Ponselet,et al.  Exponential Decay of Correlations for Strongly Coupled Toom Probabilistic Cellular Automata , 2011, 1110.1540.

[136]  Felix Breitenecker,et al.  Modelling SIR-type epidemics by ODEs, PDEs, difference equations and cellular automata - A comparative study , 2008, Simul. Model. Pract. Theory.

[137]  Pawel Bujnowski,et al.  Aspiration and Cooperation in Multiperson Prisoner's Dilemma , 2009 .

[138]  B. Soares-Filho,et al.  dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier , 2002 .

[139]  Max H. Garzon,et al.  Models of massive parallelism: analysis of cellular automata and neural networks , 1995 .

[140]  A. H. El-Bassiouny,et al.  Applying Inhomogeneous Probabilistic Cellular Au- tomata Rules on Epidemic Model , 2013 .

[141]  Jérôme Casse Probabilistic cellular automata with general alphabets letting a Markov chain invariant , 2014, 1410.3159.

[142]  A. Galves,et al.  Modeling networks of spiking neurons as interacting processes with memory of variable length , 2015, 1502.06446.

[143]  Nazim Fatès,et al.  A Guided Tour of Asynchronous Cellular Automata , 2013, J. Cell. Autom..

[144]  B. Drossel,et al.  Exact results for the one-dimensional self-organized critical forest-fire model. , 1993, Physical review letters.

[145]  Roberto H. Schonmann,et al.  Wulff Droplets and the Metastable Relaxation of Kinetic Ising Models , 1998 .

[146]  J. Molofsky,et al.  A New Kind of Ecology? , 2004 .

[147]  T. Tom'e,et al.  Anisotropic probabilistic cellular automaton for a predator-prey system , 2007, 0705.1053.

[148]  N. Boccara,et al.  Critical behaviour of a probabilistic automata network SIS model for the spread of an infectious disease in a population of moving individuals , 1993 .

[149]  Nazim Fatès,et al.  An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata , 2004, Complex Syst..

[150]  A. Frigessi,et al.  Convergence of Some Partially Parallel Gibbs Samplers with Annealing , 1993 .

[151]  Intermediate Model Between Majority Voter PCA and Its Mean Field Model , 2013, 1310.0960.

[152]  R. Dobrushin,et al.  Locally Interacting Systems and Their Application in Biology , 1978 .

[153]  H. Fuks Nondeterministic density classification with diffusive probabilistic cellular automata. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[154]  Andrew Ilachinski,et al.  Cellular Automata: A Discrete Universe , 2001 .

[155]  M. Birkner,et al.  Survival and complete convergence for a spatial branching system with local regulation. , 2007, 0711.0649.

[156]  Jean Mairesse,et al.  Probabilistic cellular automata and random fields with i.i.d. directions , 2012, ArXiv.

[157]  Nucleation pattern at low temperature for local Kawasaki dynamicsin two dimensions , 2005 .

[158]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[159]  Nikolay M. Yanev,et al.  Relative frequencies in multitype branching processes , 2009, 0902.4773.

[160]  H. Künsch Time reversal and stationary Gibbs measures , 1984 .

[161]  Magnetic order in the Ising model with parallel dynamics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[162]  R. Durrett,et al.  From individuals to epidemics. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[163]  G. Vichniac Simulating physics with cellular automata , 1984 .

[164]  Nazim Fatès,et al.  Stochastic Cellular Automata Solutions to the Density Classification Problem , 2012, Theory of Computing Systems.

[165]  D. A. Dawson,et al.  Stable States of Probabilisti Cellular Automata , 1977, Inf. Control..

[166]  Enrico Formenti,et al.  Foreword: cellular automata and applications , 2013, Natural Computing.

[167]  Xin-Jian Xu,et al.  Excitable Greenberg-Hastings cellular automaton model on scale-free networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[168]  Antoine Georges,et al.  From equilibrium spin models to probabilistic cellular automata , 1989 .

[169]  J. R. G. Mendonça The inactive-active phase transition in the noisy additive (exclusive-or) probabilistic cellular automaton , 2015 .

[170]  E. Olivieri,et al.  Large deviations and metastability , 2005 .

[171]  P. Tisseur,et al.  Invariant Measures and Decay of Correlations for a Class of Ergodic Probabilistic Cellular Automata , 2009, 0907.4841.

[172]  Lise Ponselet,et al.  Phase transitions in probabilistic cellular automata , 2013, 1312.3612.

[173]  Benedetto Scoppola,et al.  Sampling from a Gibbs Measure with Pair Interaction by Means of PCA , 2012 .

[174]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[175]  Julien Cervelle,et al.  Constructing Continuous Systems from Discrete Cellular Automata , 2013, CiE.

[176]  N. Konno,et al.  LIMIT THEOREMS FOR THE NONATTRACTIVE DOMANY-KINZEL MODEL , 2002 .

[177]  Thomas M Liggett,et al.  Stochastic models for large interacting systems and related correlation inequalities , 2010, Proceedings of the National Academy of Sciences.

[178]  Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations , 2014, 1412.7923.

[179]  Gibbsian Description of Mean-Field Models , 2008 .

[180]  Enrico Formenti,et al.  Algorithmic Complexity and Cellular Automata , 2009, Encyclopedia of Complexity and Systems Science.

[181]  Olga L. Bandman,et al.  Simulating Spatial Dynamics by Probabilistic Cellular Automata , 2002, ACRI.

[182]  Ioannis G. Karafyllidis,et al.  A model for predicting forest fire spreading using cellular automata , 1997 .

[183]  D. Dhar Equivalence of the two-dimensional directed-site animal problem to Baxter's hard-square lattice-gas model , 1982 .

[184]  Eve Passerini,et al.  Statistical mechanics of collective behavior: Macro‐sociology , 1998 .

[185]  F. Peper,et al.  Computation by Asynchronously Updating Cellular Automata , 2004 .

[186]  Roeland M. H. Merks,et al.  Cellular Potts Modeling of Tumor Growth, Tumor Invasion, and Tumor Evolution , 2013, Front. Oncol..

[187]  R. Manzano,et al.  Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells. , 2012, Journal of theoretical biology.

[188]  Mireille Bousquet-Mélou,et al.  New enumerative results on two-dimensional directed animals , 1998, Discret. Math..

[189]  Jean Mairesse,et al.  Around probabilistic cellular automata , 2014, Theor. Comput. Sci..

[190]  R. Hofstad,et al.  Ising Models on Power-Law Random Graphs , 2010, 1005.4556.

[191]  Moshe Sipper,et al.  Simple + Parallel + Local = Cellular Computing , 1998, PPSN.

[192]  Rick Durrett,et al.  Stochastic Spatial Models , 1999, SIAM Rev..

[194]  E. Olivieri,et al.  Metastability and nucleation for conservative dynamics , 2000 .

[195]  Hector Zenil,et al.  Wolfram's Classification and Computation in Cellular Automata Classes III and IV , 2012, ArXiv.

[196]  Yi Jiang,et al.  On Cellular Automaton Approaches to Modeling Biological Cells , 2003, Mathematical Systems Theory in Biology, Communications, Computation, and Finance.