On the condition number anomaly of Gaussian correlation matrices
暂无分享,去创建一个
[1] P. Lancaster. On eigenvalues of matrices dependent on a parameter , 1964 .
[2] Wei-Liem Loh,et al. Estimating structured correlation matrices in smooth Gaussian random field models , 2000 .
[3] D. J. Hartfiel,et al. Dense sets of diagonalizable matrices , 1995 .
[4] Nancy Nichols,et al. Conditioning of incremental variational data assimilation, with application to the Met Office system , 2011 .
[5] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[6] Ralf Zimmermann,et al. Asymptotic Behavior of the Likelihood Function of Covariance Matrices of Spatial Gaussian Processes , 2010, J. Appl. Math..
[7] G. Stewart. Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .
[8] P. Michor,et al. Choosing roots of polynomials smoothly , 1998, math/9801026.
[9] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[10] Noel A. C. Cressie,et al. Statistics for Spatial Data: Cressie/Statistics , 1993 .
[11] Alan C. Koivunen,et al. On the condition number of Gaussian sample-covariance matrices , 2000, IEEE Trans. Geosci. Remote. Sens..
[12] Kanti V. Mardia,et al. On multimodality of the likelihood in the spatial linear model , 1989 .
[13] Andy J. Keane,et al. Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .
[14] K. Mardia,et al. Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .
[15] Seung-Jean Kim,et al. Condition‐number‐regularized covariance estimation , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[16] R. Ababou,et al. On the condition number of covariance matrices in kriging, estimation, and simulation of random fields , 1994 .
[17] B. Baxter,et al. The Interpolation Theory of Radial Basis Functions , 2010, 1006.2443.
[18] Phil Diamond,et al. Robustness of variograms and conditioning of kriging matrices , 1984 .
[19] D. Posa. Conditioning of the stationary kriging matrices for some well-known covariance models , 1989 .
[20] Pritam Ranjan,et al. A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data , 2010, Technometrics.
[21] Andrew D. Back,et al. Radial Basis Functions , 2001 .
[22] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[23] N. Nichols,et al. Conditioning of the 3DVAR Data Assimilation Problem , 2009 .
[24] A. C. Koivunen,et al. The Feasibility of Data Whitening to Improve Performance of Weather Radar , 1999 .
[25] I. J. Schoenberg,et al. Metric spaces and positive definite functions , 1938 .
[26] Matthew M Lin,et al. On the Nonnegative Rank of Euclidean Distance Matrices. , 2010, Linear algebra and its applications.
[27] Peter Challenor,et al. Computational Statistics and Data Analysis the Effect of the Nugget on Gaussian Process Emulators of Computer Models , 2022 .
[28] H. G. ter Morsche,et al. Computation of eigenvalue and eigenvector derivatives for a general complex-valued eigensystem , 2006 .
[29] J. Gower. Properties of Euclidean and non-Euclidean distance matrices , 1985 .
[30] Max D. Morris,et al. Six factors which affect the condition number of matrices associated with kriging , 1997 .
[31] A. Yaglom. Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .
[32] I. J. Schoenberg. Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .
[33] Brian D. Ripley,et al. Problems with likelihood estimation of covariance functions of spatial Gaussian processes , 1987 .
[34] F. Rellich,et al. Störungstheorie der Spektralzerlegung , 1937 .