Auction design with costly preference elicitation

We consider auction design in a setting with costly preference elicitation. Well designed auctions can help to avoid unnecessary elicitation while determining efficient allocations. Careful design can also lead to more efficient outcomes when elicitation is too costly to permit perfect allocative efficiency. An incremental revelation principle is developed and used to motivate the role of proxied and indirect auction designs. Proxy agents, situated between bidders and an auction, can be used to maintain partial information about bidder preferences, to compute equilibrium bidding strategies based on the available information, and to elicit additional preference information as required. We derive information-theoretic elicitation policies for proxy agents under a simple model of costly elicitation across different auction designs. An experimental analysis demonstrates that indirect mechanisms, such as ascending-price auctions, can achieve better allocative efficiency with less preference elicitation than sealed-bid (direct) auctions because they promote better decisions about preference elicitation.

[1]  Tuomas Sandholm,et al.  An Implementation of the Contract Net Protocol Based on Marginal Cost Calculations , 1993, AAAI.

[2]  Noam Nisan,et al.  Algorithmic Mechanism Design , 2001, Games Econ. Behav..

[3]  Tuomas Sandholm,et al.  An alternating offers bargaining model for computationally limited agents , 2002, AAMAS '02.

[4]  Noam Nisany,et al.  The Communication Requirements of E¢cient Allocations and Supporting Lindahl Prices¤ , 2003 .

[5]  David C. Parkes,et al.  Preventing Strategic Manipulation in Iterative Auctions: Proxy Agents and Price-Adjustment , 2000, AAAI/IAAI.

[6]  David C. Parkes,et al.  Iterative combinatorial auctions: achieving economic and computational efficiency , 2001 .

[7]  Jerry R. Green,et al.  Characterization of Satisfactory Mechanisms for the Revelation of Preferences for Public Goods , 1977 .

[8]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[9]  John O. Ledyard,et al.  The Design of Coordination Mechanisms and Organizational Computing , 1993 .

[10]  T. Sandholm Limitations of the Vickrey Auction in Computational Multiagent Systems , 1996 .

[11]  Paula J. Brewer Decentralized computation procurement and computational robustness in a smart market , 1999 .

[12]  Noam Nisan,et al.  Auctions with Severely Bounded Communication , 2007, J. Artif. Intell. Res..

[13]  R. McAfee,et al.  Analyzing the Airwaves Auction , 1996 .

[14]  N. Nisan,et al.  The Communication Complexity of Efficient Allocation Problems , 2002 .

[15]  Chris Caplice,et al.  Combinatorial Auctions for Truckload Transportation , 2005 .

[16]  J. Bakos Reducing buyer search costs: implications for electronic marketplaces , 1997 .

[17]  David C. Parkes,et al.  Applying learning algorithms to preference elicitation , 2004, EC '04.

[18]  Jeffrey O. Kephart,et al.  Shopbots and Pricebots , 1999, IJCAI.

[19]  Sven de Vries,et al.  On ascending Vickrey auctions for heterogeneous objects , 2007, J. Econ. Theory.

[20]  Lawrence M. Ausubel,et al.  Ascending Auctions with Package Bidding , 2002 .

[21]  Tuomas Sandholm,et al.  Effectiveness of Preference Elicitation in Combinatorial Auctions , 2002, AMEC.

[22]  Michael P. Wellman,et al.  Specifying Rules for Electronic Auctions , 2002, AI Mag..

[23]  Noam Nisan,et al.  Multi-player and Multi-round Auctions with Severely Bounded Communication , 2003, ESA.

[24]  David C. Parkes,et al.  Preference elicitation in proxied multiattribute auctions , 2003, EC '03.

[25]  Tuomas Sandholm,et al.  Bargaining with limited computation: Deliberation equilibrium , 2001, Artif. Intell..

[26]  Stuart J. Russell,et al.  Principles of Metareasoning , 1989, Artif. Intell..

[27]  Paul R. Milgrom,et al.  A theory of auctions and competitive bidding , 1982 .

[28]  Y. Shoham,et al.  Truth revelation in rapid, approximately efficient combinatorial auctions , 2001 .

[29]  Yoav Shoham,et al.  Combinatorial Auctions , 2005, Encyclopedia of Wireless Networks.

[30]  Yoav Shoham,et al.  Truth revelation in approximately efficient combinatorial auctions , 2002, EC '99.

[31]  Noam Nisan,et al.  Bidding Languages for Combinatorial Auctions , 2005 .

[32]  Tuomas Sandholm,et al.  Automated negotiation , 1999, CACM.

[33]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[34]  Éva Tardos,et al.  Truthful mechanisms for one-parameter agents , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[35]  Avrim Blum,et al.  Preference Elicitation and Query Learning , 2004, J. Mach. Learn. Res..

[36]  Ilya Segal,et al.  Solutions manual for Microeconomic theory : Mas-Colell, Whinston and Green , 1997 .

[37]  Dan Levin,et al.  Equilibrium in Auctions with Entry , 1994 .

[38]  Moshe Tennenholtz,et al.  Bundling equilibrium in combinatorial auctions , 2002, Games Econ. Behav..

[39]  D. Lehmann,et al.  The Winner Determination Problem , 2003 .

[40]  Tuomas Sandholm,et al.  Partial-revelation VCG mechanism for combinatorial auctions , 2002, AAAI/IAAI.

[41]  David C. Parkes,et al.  Iterative Combinatorial Auctions: Theory and Practice , 2000, AAAI/IAAI.

[42]  Tuomas Sandholm,et al.  Effectiveness of query types and policies for preference elicitation in combinatorial auctions , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[43]  Martin Pesendorfer,et al.  Auctioning bus routes: the London experience , 2006 .

[44]  P. Jehiel On the virtues of the ascending price auction : New insights in the private value setting , 2000 .

[45]  David C. Parkes,et al.  Ascending Price Vickrey Auctions for General Valuations , 2005, J. Econ. Theory.

[46]  David C. Parkes,et al.  Price-Based Information Certificates for Minimal-Revelation Combinatorial Auctions , 2002, AMEC.

[47]  T. Sandholm,et al.  Costly valuation computation in auctions , 2001 .

[48]  William Samuelson Competitive bidding with entry costs , 1985 .

[49]  Charles D. Kolstad,et al.  Information and the Divergence between Willingness to Accept and Willingness to Pay , 1999 .

[50]  Michael Peters,et al.  Sequential selling mechanisms , 1994 .

[51]  E. H. Clarke Multipart pricing of public goods , 1971 .

[52]  D. Lien,et al.  A note on bimatrix games with an unknown payoff matrix , 1985 .

[53]  Theodore Groves,et al.  Incentives in Teams , 1973 .

[54]  Tuomas Sandholm,et al.  Preference elicitation in combinatorial auctions , 2001, AAMAS '02.

[55]  Robert H. Guttman,et al.  Cooperative vs. Competitive Multi-Agent Negotiations in Retail Electronic Commerce , 1998, CIA.

[56]  David C. Parkes,et al.  Iterative Multiattribute Vickrey Auctions , 2002 .

[57]  Kyna G. Fong,et al.  Multi-Stage Information Acquisition in Auction Design , 2003 .

[58]  Michael P. Wellman,et al.  Computing Equilibrium Strategies in Infinite Games of Incomplete Information , 2022 .

[59]  P. Jehiel,et al.  Auctions and Information acquisition: Sealed-bid or Dynamic Formats? , 2007 .

[60]  David C. Parkes,et al.  Accounting for Cognitive Costs in On-Line Auction Design , 1998, AMET.

[61]  Vincent Conitzer,et al.  Computational criticisms of the revelation principle , 2004, EC '04.

[62]  David C. Parkes,et al.  Ascending Price Vickrey Auctions Using Primal-Dual Algorithms∗ , 2004 .

[63]  Tom K. Lee Competition and information acquisition in first price auctions , 1985 .

[64]  M. Stegeman Participation Costs and Efficient Auctions , 1996 .

[65]  Amir Ronen,et al.  Mechanism design with incomplete languages , 2001, EC '01.

[66]  Noam Nisan,et al.  The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.

[67]  David C. Parkes,et al.  Models for Iterative Multiattribute Procurement Auctions , 2005, Manag. Sci..

[68]  Tuomas Sandholm,et al.  Experiments on deliberation equilibria in auctions , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..