Optical Isolation based on Space-time Engineered Asymmetric Photonic Bandgaps

Nonreciprocal electromagnetic devices play an important role in modern optical and microwave technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices is more urgent than ever. This paper leverages space-time engineered asymmetric photonic bandgaps to generate optical isolation. It is shown that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The proposed method requires a low modulation frequency, is magnetless and can achieve very high isolation levels. Experimental proof of concept at microwave frequencies is provided.

[1]  C. Caloz,et al.  Electromagnetic Modeling of a Magnetless Nonreciprocal Gyrotropic Metasurface , 2013, IEEE Transactions on Antennas and Propagation.

[2]  C. Caloz,et al.  Graphene transverse electric surface plasmon detection using nonreciprocity modal discrimination , 2015, 1510.07164.

[3]  C. Caloz,et al.  Non-reciprocal magnetoplasmon graphene coupler. , 2013, Optics express.

[4]  Yi Xuan,et al.  An All-Silicon Passive Optical Diode , 2012, Science.

[5]  C. Caloz,et al.  Switchable Magnetless Nonreciprocal Metamaterial (MNM) and its Application to a Switchable Faraday Rotation Metasurface , 2012, IEEE Antennas and Wireless Propagation Letters.

[6]  Andrea Alù,et al.  Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials , 2013, Nature Communications.

[7]  Michael Scalora,et al.  Thin-film nonlinear optical diode , 1995 .

[8]  Steven A. Cummer,et al.  A completely covariant approach to transformation optics , 2010, 1006.3118.

[9]  P. K. Tien,et al.  Parametric Amplification and Frequency Mixing in Propagating Circuits , 1958 .

[10]  B. Culshaw,et al.  Fundamentals of Photonics , 2012 .

[11]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[12]  Poladian Resonance mode expansions and exact solutions for nonuniform gratings. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  C. Caloz,et al.  Magnetless Nonreciprocal Metamaterial (MNM) Technology: Application to Microwave Components , 2013, IEEE Transactions on Microwave Theory and Techniques.

[14]  G. Melkov,et al.  Magnetization Oscillations and Waves , 1996 .

[15]  Andrew G. Glen,et al.  APPL , 2001 .

[16]  Andrea Alù,et al.  Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops , 2014, Nature Physics.

[17]  Nader Engheta,et al.  All-passive nonreciprocal metastructure , 2015, Nature communications.

[18]  Joel M. Hensley,et al.  Surface plasmon isolator based on nonreciprocal coupling , 2009 .

[19]  A. A. Oliner,et al.  Dispersion relations in time-space periodic media part II—Unstable interactions , 1963 .

[20]  Carmine Vittoria,et al.  ELECTROMAGNETIC WAVE PROPAGATION IN MAGNETIC FILMS , 1993 .

[21]  Zongfu Yu,et al.  Limitations of nonlinear optical isolators due to dynamic reciprocity , 2015, Nature Photonics.

[22]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[23]  M. Lipson,et al.  Subject Areas : Optics A Viewpoint on : Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip , 2012 .

[24]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[25]  U. Leonhardt,et al.  Fiber-Optical Analog of the Event Horizon , 2007, Science.

[26]  Christophe Caloz,et al.  Terahertz magnetoplasmon energy concentration and splitting in Graphene PN Junctions. , 2013, Optics express.

[27]  J. Plebański,et al.  Electromagnetic Waves in Gravitational Fields , 1960 .

[28]  Yuanxun Ethan Wang,et al.  Nonreciprocal Components With Distributedly Modulated Capacitors , 2014, IEEE Transactions on Microwave Theory and Techniques.

[29]  Martin M. Fejer,et al.  All-optical diode in a periodically poled lithium niobate waveguide , 2001 .

[30]  A. Cullen,et al.  A Travelling-Wave Parametric Amplifier , 1958, Nature.

[31]  최인후,et al.  13 , 1794, Tao te Ching.

[32]  V. Berger,et al.  Nonlinear Photonic Crystals , 1998 .

[33]  Harish Krishnaswamy,et al.  Magnetic-free non-reciprocity based on staggered commutation , 2016, Nature Communications.

[34]  Christophe Caloz,et al.  Nonreciprocal Nongyrotropic Magnetless Metasurface , 2016, IEEE Transactions on Antennas and Propagation.

[35]  Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal , 2011 .

[36]  Martin J Cryan,et al.  Analysis and design of integrated active circulator antennas , 2000 .

[37]  S. Tretyakov,et al.  Generalized field-transforming metamaterials , 2008, 0806.0489.

[38]  A. Imamoğlu,et al.  Giant Kerr nonlinearities obtained by electromagnetically induced transparency. , 1996, Optics letters.

[39]  Jiangtao Huangfu,et al.  Gyrotropic response in the absence of a bias field , 2012, Proceedings of the National Academy of Sciences.

[40]  Shi-Yao Zhu,et al.  Optical diode made from a moving photonic crystal. , 2012, Physical review letters.

[41]  G. Carchon,et al.  Power and noise limitations of active circulators , 2000 .

[42]  Optomechanically induced non-reciprocity in microring resonators. , 2011, Optics express.

[43]  Zach DeVito,et al.  Opt , 2017 .

[44]  Zongfu Yu,et al.  Complete optical isolation created by indirect interband photonic transitions , 2009 .

[45]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[46]  R. W. Boyd,et al.  Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering , 2017, Science.

[47]  A. Hartstein,et al.  Observation of magnetoplasma type surface polaritons on n-InSb , 1974 .

[48]  Theodor Tamir,et al.  Wave propagation and dispersion in space-time periodic media , 1972 .

[49]  Shanhui Fan,et al.  Nonlinear photonic crystal microdevices for optical integration. , 2003, Optics letters.

[50]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[51]  Z. Musslimani,et al.  PT -symmetric optical lattices , 2010 .

[52]  S. Tanaka,et al.  Active circulators—The realization of circulators using transistors , 1965 .

[53]  José Azaña,et al.  Nonreciprocal waveguide Bragg gratings. , 2005, Optics express.

[54]  Christophe Caloz,et al.  Artificial Faraday rotation using a ring metamaterial structure without static magnetic field , 2011 .

[55]  A. Oliner,et al.  Guided waves on sinusoidally-modulated reactance surfaces , 1959 .

[56]  Shiyue Hua,et al.  Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators , 2014, Nature Photonics.

[57]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[58]  Massimo Ruzzene,et al.  Non-reciprocal elastic wave propagation in spatiotemporal periodic structures , 2016, 1605.00734.