Quantum Spectroscopy of Plasmonic Nanostructures

We use frequency entangled photons, generated via spontaneous parametric down conversion, to measure the broadband spectral response of an array of gold nanoparticles exhibiting Fano-type plasmon resonance. Refractive index sensing of a liquid is performed by measuring the shift of the array resonance. This method is robust in excessively noisy conditions compared with conventional broadband transmission spectroscopy. Detection of a refractive index change is demonstrated with a noise level 70 times higher than the signal, which is shown to be inaccessible with the conventional transmission spectroscopy. Use of low photon fluxes makes this method suitable for measurements of photosensitive bio-samples and chemical substances.

[1]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[2]  J. Rarity,et al.  The use of pair production processes to reduce quantum noise in transmission measurements , 1986 .

[3]  Giuliano Scarcelli,et al.  Remote spectral measurement using entangled photons , 2003, quant-ph/0407164.

[4]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[5]  Sergei P. Kulik,et al.  Control of the spectrum of the biphoton field , 2011 .

[6]  J. Gómez Rivas,et al.  Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. , 2009, Physical review letters.

[7]  Lijun Ma,et al.  Frequency correlated biphoton spectroscopy using tunable upconversion detector , 2013 .

[8]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[9]  Vincenzo Giannini,et al.  Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas , 2009 .

[10]  V. Zwiller,et al.  Quantum interference in plasmonic circuits. , 2013, Nature nanotechnology.

[11]  L. Mandel,et al.  Optical communication channel based on coincident photon pairs. , 1985, Applied optics.

[12]  Marko Lonvcar,et al.  Enhanced single-photon emission from a diamond–silver aperture , 2011, 1105.4096.

[13]  Atsushi Yabushita,et al.  Spectroscopy by frequency-entangled photon pairs , 2004 .

[14]  Leonid Krivitsky,et al.  Demonstration of quadrature squeezed surface-plasmons in a gold waveguide , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[15]  D. Kalashnikov,et al.  Biphoton spectroscopy in a strongly nondegenerate regime of SPDC , 2008 .

[16]  Shailesh Kumar,et al.  Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. , 2010, Physical review letters.

[17]  S. Kulik,et al.  Controlling the spectrum of a two-photon field: Inhomogeneous broadening due to a temperature gradient , 2009 .

[18]  Nicolas Gisin,et al.  Energy-time entanglement preservation in plasmon-assisted light transmission. , 2004, Physical review letters.

[19]  D. Kalashnikov,et al.  Biphoton spectroscopy of YAG:Er3+ crystal , 2007 .

[20]  Vladimir M. Shalaev,et al.  Nanoantenna array-induced fluorescence enhancement and reduced lifetimes , 2008 .

[21]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[22]  J. P. Woerdman,et al.  Plasmon-assisted transmission of entangled photons , 2002, Nature.

[23]  Silvia Carrasco,et al.  Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion. , 2008, Physical review letters.

[24]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[25]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[26]  R. Pooser,et al.  Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons. , 2012, Physical review letters.

[27]  Akira Tanaka,et al.  Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals. , 2012, Optics express.

[28]  B. Saleh,et al.  Reduction of quantum noise in transmittance estimation using photon-correlated beams , 1999 .

[29]  S. Mori,et al.  Preservation of photon indistinguishability after transmission through surface-plasmon-polariton waveguide. , 2012, Optics letters.

[30]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[31]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[32]  U. Andersen,et al.  Efficient coupling of a single diamond color center to propagating plasmonic gap modes. , 2013, Nano letters.

[33]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.