An upconverted photonic nonvolatile memory

Conventional flash memory devices are voltage driven and found to be unsafe for confidential data storage. To ensure the security of the stored data, there is a strong demand for developing novel nonvolatile memory technology for data encryption. Here we show a photonic flash memory device, based on upconversion nanocrystals, which is light driven with a particular narrow width of wavelength in addition to voltage bias. With the help of near-infrared light, we successfully manipulate the multilevel data storage of the flash memory device. These upconverted photonic flash memory devices exhibit high ON/OFF ratio, long retention time and excellent rewritable characteristics.

[1]  Agostino Pirovano,et al.  Memory grows up. , 2010, Nature nanotechnology.

[2]  Sang Jun Lee,et al.  A monolithically integrated plasmonic infrared quantum dot camera. , 2011, Nature communications.

[3]  Ma Zhong Fundamentals and recent progress of mesoscopic Physics , 2007 .

[4]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[5]  Mikhail G. Shapiro,et al.  Infrared light excites cells by changing their electrical capacitance , 2012, Nature Communications.

[6]  J. Tour,et al.  Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene , 2012, Nature Communications.

[7]  Jeng-Tzong Sheu,et al.  Photoresponses and memory effects in organic thin film transistors incorporating poly(3-hexylthiophene)/CdSe quantum dots , 2008 .

[8]  Su‐Ting Han,et al.  Towards the Development of Flexible Non‐Volatile Memories , 2013, Advanced materials.

[9]  Chao Zhang,et al.  Luminescence Modulation of Ordered Upconversion Nanopatterns by a Photochromic Diarylethene: Rewritable Optical Storage with Nondestructive Readout , 2010, Advanced materials.

[10]  F. Caruso,et al.  Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. , 2007, Nature nanotechnology.

[11]  Vellaisamy A. L. Roy,et al.  Controllable threshold voltage shifts of polymer transistors and inverters by utilizing gold nanoparticles , 2012 .

[12]  Cheng-Liang Liu,et al.  Flexible Nonvolatile Transistor Memory Devices Based on One‐Dimensional Electrospun P3HT:Au Hybrid Nanofibers , 2013 .

[13]  Michael B. Sinclair,et al.  Impact of interfacial polymer morphology on photoexcitation dynamics and device performance in P3HT/ZnO heterojunctions , 2009 .

[14]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[15]  Jang-Sik Lee,et al.  Flexible organic transistor memory devices. , 2010, Nano letters.

[16]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[17]  Xiaogang Liu,et al.  Recent Advances in the Chemistry of Lanthanide‐Doped Upconversion Nanocrystals , 2009 .

[18]  Jun Lin,et al.  Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. , 2014, Chemical reviews.

[19]  Steven Baldelli Sensing: Infrared image upconversion , 2011 .

[20]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[21]  C. S. Lim,et al.  Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping , 2010, Nature.

[22]  Young-Jun Yu,et al.  Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices , 2013, Nature Communications.

[23]  Yang Yang,et al.  Electrical memory devices based on inorganic/organic nanocomposites , 2012 .

[24]  T. Someya,et al.  Flexible electronics: tiny lamps to illuminate the body. , 2010, Nature materials.

[25]  S. L. Westcott,et al.  Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. , 2000, Journal of biomedical materials research.

[26]  Hai Zhu,et al.  Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. , 2013, Angewandte Chemie.

[27]  Shan Jiang,et al.  Multicolor Core/Shell‐Structured Upconversion Fluorescent Nanoparticles , 2008 .

[28]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[29]  Jin-Woo Han,et al.  Photoinduced Memory with Hybrid Integration of an Organic Fullerene Derivative and an Inorganic Nanogap‐Embedded Field‐Effect Transistor for Low‐Voltage Operation , 2011, Advanced materials.

[30]  Yong Zhang,et al.  Small upconverting fluorescent nanoparticles for biomedical applications. , 2010, Small.

[31]  Su-Ting Han,et al.  Microcontact Printing of Ultrahigh Density Gold Nanoparticle Monolayer for Flexible Flash Memories , 2012, Advanced materials.

[32]  A. Heeger,et al.  X-ray structural studies of poly(3-alkylthiophenes): an example of an inverse comb , 1992 .

[33]  Kamal Asadi,et al.  Organic non-volatile memories from ferroelectric phase-separated blends. , 2008, Nature materials.

[34]  C. Brabec,et al.  Rare‐Earth Ion Doped Up‐Conversion Materials for Photovoltaic Applications , 2011, Advanced materials.

[35]  Renren Deng,et al.  Tuning upconversion through energy migration in core-shell nanoparticles. , 2011, Nature materials.

[36]  J. Young,et al.  Infrared image upconversion using two-photon resonant optical four-wave mixing in alkali metal vapors , 1980 .

[37]  K. Guarini,et al.  High-Resolution Inkjet Printing of All-Polymer Transistor Circuits , 2009 .

[38]  Z. Suo,et al.  Mechanics of rollable and foldable film-on-foil electronics , 1999 .

[39]  Feng Yan,et al.  Enhancement of Hole Mobility of Poly(3‐hexylthiophene) Induced by Titania Nanorods in Composite Films , 2011, Advanced materials.

[40]  Nripan Mathews,et al.  Towards printable organic thin film transistor based flash memory devices , 2011 .

[41]  Uli Lemmer,et al.  Near-infrared imaging with quantum-dot-sensitized organic photodiodes , 2009 .

[42]  Gerwin Gelinck,et al.  Semiconductor electronics: Trapped fast at the gate , 2007, Nature.

[43]  Wei Huang,et al.  Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. , 2013, Chemical Society reviews.

[44]  Gui Yu,et al.  Functional Organic Field‐Effect Transistors , 2010, Advanced materials.

[45]  Lu You,et al.  Non-volatile memory based on the ferroelectric photovoltaic effect , 2013, Nature Communications.

[46]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[47]  H.-S. Philip Wong,et al.  Carbon nanotube computer , 2013, Nature.

[48]  Mato Knez,et al.  Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy , 2013, Nature Communications.

[49]  Sung-Min Yoon,et al.  Fully Transparent Non‐volatile Memory Thin‐Film Transistors Using an Organic Ferroelectric and Oxide Semiconductor Below 200 °C , 2010 .

[50]  E. Campbell,et al.  A fast and low-power microelectromechanical system-based non-volatile memory device , 2011, Nature communications.

[51]  Qingfeng Dong,et al.  Solution-Processed Nanoparticle Super-Float-Gated Organic Field-Effect Transistor as Un-cooled Ultraviolet and Infrared Photon Counter , 2013, Scientific Reports.

[52]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[53]  A. Briseno,et al.  Additive-driven assembly of block copolymer-nanoparticle hybrid materials for solution processable floating gate memory. , 2012, ACS nano.

[54]  Jeppe Seidelin Dam,et al.  Room-temperature mid-infrared single-photon spectral imaging , 2012, Nature Photonics.

[55]  Yongsung Ji,et al.  Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture , 2013, Nature Communications.

[56]  M. Schnell,et al.  Infrared-spectroscopic nanoimaging with a thermal source. , 2011, Nature materials.

[57]  Reinhard Schwödiauer,et al.  Anodized Aluminum Oxide Thin Films for Room‐Temperature‐Processed, Flexible, Low‐Voltage Organic Non‐Volatile Memory Elements with Excellent Charge Retention , 2011, Advanced materials.

[58]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[59]  Yong-Young Noh,et al.  Printed, Flexible, Organic Nano‐Floating‐Gate Memory: Effects of Metal Nanoparticles and Blocking Dielectrics on Memory Characteristics , 2013 .

[60]  James M Tour,et al.  Electronic two-terminal bistable graphitic memories. , 2008, Nature materials.

[61]  Jiang Tang,et al.  Infrared Colloidal Quantum Dots for Photovoltaics: Fundamentals and Recent Progress , 2011, Advanced materials.

[62]  V. A. L. Roy,et al.  Nonvolatile multilevel data storage memory device from controlled ambipolar charge trapping mechanism , 2013, Scientific Reports.

[63]  Hai Zhu,et al.  Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals. , 2013, ACS nano.

[64]  R. Muller,et al.  Polymer and Organic Nonvolatile Memory Devices , 2011 .