Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure

Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual–vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how changes in connectivity are related to vestibular impairment. We applied a novel data driven approach based on graph theory to investigate altered whole-brain resting-state functional connectivity in BVF patients (n= 22) compared to age- and gender-matched healthy controls (n= 25) using resting-state fMRI. Changes in functional connectivity were related to subjective (vestibular scores) and objective functional parameters of vestibular impairment, specifically, the adaptive changes during active (self-guided) and passive (investigator driven) head impulse test (HIT) which reflects the integrity of the vestibulo-ocular reflex (VOR). BVF patients showed lower bilateral connectivity in the posterior insula and parietal operculum but higher connectivity in the posterior cerebellum compared to controls. Seed-based analysis revealed stronger connectivity from the right posterior insula to the precuneus, anterior insula, anterior cingulate cortex and the middle frontal gyrus. Excitingly, functional connectivity in the supramarginal gyrus (SMG) of the inferior parietal lobe and posterior cerebellum correlated with the increase of VOR gain during active as compared to passive HIT, i.e., the larger the adaptive VOR changes the larger was the increase in regional functional connectivity. Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These changes in the resting brain are robust and task-independent as they were found in the absence of sensory stimulation and without a region-related a priori hypothesis. Therefore they may indicate a fundamental disease-related change in the resting brain. They may account for the patients' persistent deficits in visuo-spatial attention, spatial orientation and unsteadiness. The relation of increasing connectivity in the inferior parietal lobe, specifically SMG, to improvement of VOR during active head movements reflects cortical plasticity in BVF and may play a clinical role in vestibular rehabilitation.

[1]  Keith A. Johnson,et al.  Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease , 2009, The Journal of Neuroscience.

[2]  Justin L. Vincent,et al.  Distinct brain networks for adaptive and stable task control in humans , 2007, Proceedings of the National Academy of Sciences.

[3]  Amir Kheradmand,et al.  Transcranial magnetic stimulation (TMS) of the supramarginal gyrus: a window to perception of upright. , 2015, Cerebral cortex.

[4]  A. Berthoz,et al.  Functional MRI of galvanic vestibular stimulation. , 1998, Journal of neurophysiology.

[5]  Naomi B. Pitskel,et al.  Three Systems of Insular Functional Connectivity Identified with Cluster Analysis , 2010, Cerebral cortex.

[6]  T. Brandt,et al.  Follow-up of vestibular function in bilateral vestibulopathy , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[7]  Rüdiger Wenzel,et al.  Human Vestibular Cortex as Identified with Caloric Stimulation in Functional Magnetic Resonance Imaging , 2002, NeuroImage.

[8]  C. D. Della Santina,et al.  Comparison of head thrust test with head autorotation test reveals that the vestibulo-ocular reflex is enhanced during voluntary head movements. , 2002, Archives of otolaryngology--head & neck surgery.

[9]  O. Sporns,et al.  Network centrality in the human functional connectome. , 2012, Cerebral cortex.

[10]  David J. Sharp,et al.  Visual and proprioceptive interaction in patients with bilateral vestibular loss☆ , 2014, NeuroImage: Clinical.

[11]  T. Brandt,et al.  Bilateral vestibular failure impairs visual motion perception even with the head still , 1998, Neuroreport.

[12]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[13]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[14]  A. Sprenger,et al.  Do Predictive Mechanisms Improve the Angular Vestibulo-Ocular Reflex in Vestibular Neuritis? , 2006, Audiology and Neurotology.

[15]  N Nighoghossian,et al.  Evidence for interacting cortical control of vestibular function and spatial representation in man , 2003, Neuropsychologia.

[16]  J. Sepulcre,et al.  Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. , 2013, JAMA psychiatry.

[17]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  T. Paus Primate anterior cingulate cortex: Where motor control, drive and cognition interface , 2001, Nature Reviews Neuroscience.

[19]  Thomas Brandt,et al.  Metabolic changes in vestibular and visual cortices in acute vestibular neuritis , 2004, Annals of neurology.

[20]  T. Münte,et al.  Altered Resting State Brain Networks in Parkinson’s Disease , 2013, PloS one.

[21]  T. Brandt Bilateral vestibulopathy revisited. , 1996, European journal of medical research.

[22]  Cornelis J. Stam,et al.  Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain , 2008, NeuroImage.

[23]  Thomas Bauermann,et al.  Evidence for cortical visual substitution of chronic bilateral vestibular failure (an fMRI study). , 2007, Brain : a journal of neurology.

[24]  T. Brandt,et al.  Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). , 2001, Journal of neurophysiology.

[25]  Hans-Georg Buchholz,et al.  The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism , 2014, Brain Structure and Function.

[26]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[27]  Hidenao Fukuyama,et al.  Cortical correlates of vestibulo-ocular reflex modulation: a PET study. , 2003, Brain : a journal of neurology.

[28]  Simon B. Eickhoff,et al.  Meta-analytical definition and functional connectivity of the human vestibular cortex , 2012, NeuroImage.

[29]  Miklós Emri,et al.  Cortical projection of peripheral vestibular signaling. , 2003, Journal of neurophysiology.

[30]  G. DeAngelis,et al.  Representation of Vestibular and Visual Cues to Self-Motion in Ventral Intraparietal Cortex , 2011, The Journal of Neuroscience.

[31]  T. Brandt,et al.  Functional brain imaging of peripheral and central vestibular disorders. , 2008, Brain : a journal of neurology.

[32]  T. Brandt,et al.  Vestibular syndromes in the roll plane: Topographic diagnosis from brainstem to cortex , 1994, Annals of neurology.

[33]  O J Grüsser,et al.  Localization and responses of neurones in the parieto‐insular vestibular cortex of awake monkeys (Macaca fascicularis). , 1990, The Journal of physiology.

[34]  G Michael Halmagyi,et al.  The active head-impulse test in unilateral peripheral vestibulopathy. , 2005, Archives of neurology.

[35]  T. Brandt,et al.  Perceptual and oculomotor effects of neck muscle vibration in vestibular neuritis. Ipsilateral somatosensory substitution of vestibular function. , 1998, Brain : a journal of neurology.

[36]  François Klam,et al.  ã Federation of European Neuroscience Societies Visual±vestibular interactive responses in the macaque ventral intraparietal area (VIP) , 2022 .

[37]  Guldin Wo,et al.  Is there a vestibular cortex , 1998 .

[38]  W. M. King,et al.  Getting ahead of oneself: Anticipation and the vestibulo-ocular reflex , 2013, Neuroscience.

[39]  Karl J. Friston,et al.  Topological FDR for neuroimaging , 2010, NeuroImage.

[40]  David J. Turk,et al.  The angular gyrus computes action awareness representations. , 2008, Cerebral cortex.

[41]  Kathleen E Cullen,et al.  Neural Correlates of Sensory Substitution in Vestibular Pathways following Complete Vestibular Loss , 2012, The Journal of Neuroscience.

[42]  D. Bluemke,et al.  Location of Arterial Stiffening Differs in Those With Impaired Fasting Glucose Versus Diabetes , 2009, Diabetes.

[43]  M. Beutel,et al.  [Validation of the German version of the Vertigo Handicap Questionnaire (VHQ) in patients with vestibular vertigo syndromes or somatoform vertigo and dizziness]. , 2010, Psychotherapie, Psychosomatik, medizinische Psychologie.

[44]  J. Rothwell,et al.  Perceptual Encoding of Self‐Motion Duration in Human Posterior Parietal Cortex , 2009, Annals of the New York Academy of Sciences.

[45]  J. Colebatch,et al.  Vestibular evoked myogenic potentials: Past, present and future , 2010, Clinical Neurophysiology.

[46]  Jörn Diedrichsen,et al.  A probabilistic MR atlas of the human cerebellum , 2009, NeuroImage.

[47]  Clinton Scoltard The Pathway , 1899 .

[48]  Jefferson E. Roy,et al.  Dissociating Self-Generated from Passively Applied Head Motion: Neural Mechanisms in the Vestibular Nuclei , 2004, The Journal of Neuroscience.

[49]  Martin Wiesmann,et al.  Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies , 2005, NeuroImage.

[50]  Thomas Stephan,et al.  Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications , 2003, NeuroImage.

[51]  François Klam,et al.  Vestibular response kinematics in posterior parietal cortex neurons of macaque monkeys , 2003, The European journal of neuroscience.

[52]  Marianne Dieterich,et al.  A Pathway in the Brainstem for Roll-Tilt of the Subjective Visual Vertical: Evidence from a Lesion–Behavior Mapping Study , 2012, The Journal of Neuroscience.

[53]  T. Brandt,et al.  Dominance for vestibular cortical function in the non-dominant hemisphere. , 2003, Cerebral cortex.

[54]  Ravi S. Menon,et al.  Dissociating pain from its anticipation in the human brain. , 1999, Science.

[55]  D. Straumann,et al.  Caloric and Search-Coil Head-Impulse Testing in Patients after Vestibular Neuritis , 2001, Journal of the Association for Research in Otolaryngology.

[56]  P. Stoeter,et al.  Voxel‐based morphometry depicts central compensation after vestibular neuritis , 2010, Annals of neurology.

[57]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[58]  T. Shallice,et al.  Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. , 2003, Brain : a journal of neurology.

[59]  R. Ito,et al.  Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. , 2001, Brain research. Cognitive brain research.

[60]  Karl J. Friston,et al.  False discovery rate revisited: FDR and topological inference using Gaussian random fields , 2009, NeuroImage.

[61]  T. Brandt,et al.  Preserved visual–vestibular interaction in patients with bilateral vestibular failure , 2004, Neurology.

[62]  D. Straumann,et al.  Recovery of the High-Acceleration Vestibulo-ocular Reflex After Vestibular Neuritis , 2004, Journal of the Association for Research in Otolaryngology.

[63]  Á. Pascual-Leone,et al.  Transcranial Magnetic Stimulation , 2014, Neuromethods.

[64]  I. Curthoys,et al.  Ocular vestibular-evoked myogenic potential (oVEMP) to test utricular function: neural and oculomotor evidence , 2012, Acta otorhinolaryngologica Italica : organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale.

[65]  Benjamin J. Shannon,et al.  Coherent spontaneous activity identifies a hippocampal-parietal memory network. , 2006, Journal of neurophysiology.

[66]  Daniel S. Margulies,et al.  Overlapping and parallel cerebello-cerebral networks contributing to sensorimotor control: An intrinsic functional connectivity study , 2013, NeuroImage.

[67]  Susanne M. Jaeggi,et al.  Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches , 2012, Front. Neuroanat..

[68]  Y. Naito [Human vestibular cortex]. , 2011, Rinsho shinkeigaku = Clinical neurology.

[69]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[70]  François Klam,et al.  Vestibular Signals of Posterior Parietal Cortex Neurons during Active and Passive Head Movements in Macaque Monkeys , 2003, Annals of the New York Academy of Sciences.

[71]  Karl J. Friston,et al.  Functional MRI , 1997 .

[72]  T. Brandt,et al.  Ocular torsion and tilt of subjective visual vertical are sensitive brainstem signs , 1993, Annals of neurology.

[73]  O. Grüsser,et al.  Is there a vestibular cortex? , 1998, Trends in Neurosciences.

[74]  D. Angelaki,et al.  Vestibular system: the many facets of a multimodal sense. , 2008, Annual review of neuroscience.

[75]  Dana Boatman-Reich,et al.  Causative factors and epidemiology of bilateral vestibulopathy in 255 patients , 2007, Annals of neurology.

[76]  T. Brandt,et al.  Follow-up of vestibular function in bilateral vestibulopathy , 2007, Journal of Neurology Neurosurgery & Psychiatry.

[77]  S. Faugier-Grimaud,et al.  Effects of posterior parietal lesions (area 7) on VOR in monkeys , 2004, Experimental Brain Research.

[78]  Andreas Sprenger,et al.  Changes in resting-state fMRI in vestibular neuritis , 2013, Brain Structure and Function.

[79]  P. Trillenberg,et al.  [Video-based head impulse test. Importance for routine diagnostics of patients with vertigo]. , 2013, Der Nervenarzt.

[80]  S. Faugier-Grimaud,et al.  Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo‐ocular function in a monkey (macaca fascicularis) , 1989, The Journal of comparative neurology.

[81]  H. Kingma,et al.  New perspectives on vestibular evoked myogenic potentials opyright , 2012 .

[82]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[83]  Philippe Kahane,et al.  Reappraisal of the human vestibular cortex by cortical electrical stimulation study , 2003, Annals of neurology.

[84]  V. Walsh,et al.  Adaptive motion processing in bilateral vestibular failure , 2011, Journal of Neurology, Neurosurgery & Psychiatry.

[85]  H. Kingma,et al.  New perspectives on vestibular evoked myogenic potentials. , 2013, Current opinion in neurology.

[86]  O. Schillaci,et al.  Cerebral plasticity in acute vestibular deficit , 2009, European Archives of Oto-Rhino-Laryngology.

[87]  C. Helmchen,et al.  Structural Changes in the Human Brain following Vestibular Neuritis Indicate Central Vestibular Compensation , 2009, Annals of the New York Academy of Sciences.

[88]  M. Beutel,et al.  Validation of the German version of the Vertigo Symptom Scale (VSS) in patients with organic or somatoform dizziness and healthy controls , 2008, Journal of Neurology.

[89]  T. Brandt,et al.  Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. , 2005, Brain : a journal of neurology.

[90]  Brain: A Journal of Neurology , 1878, Edinburgh Medical Journal.

[91]  Christopher L. Asplund,et al.  The organization of the human cerebellum estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[92]  Rolf-Detlef Treede,et al.  Interoceptive and multimodal functions of the operculo-insular cortex: Tactile, nociceptive and vestibular representations , 2013, NeuroImage.

[93]  C. Helmchen,et al.  Structural brain changes following peripheral vestibulo-cochlear lesion may indicate multisensory compensation , 2010, Journal of Neurology, Neurosurgery & Psychiatry.

[94]  F. Mast,et al.  The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis , 2012, Neuroscience.

[95]  D. Straumann,et al.  Accuracy of the bedside head impulse test in detecting vestibular hypofunction , 2007, Journal of Neurology, Neurosurgery, and Psychiatry.

[96]  O. Blanke,et al.  The thalamocortical vestibular system in animals and humans , 2011, Brain Research Reviews.