Viscowave – a new solution for viscoelastic wave propagation of layered structures subjected to an impact load

The forward models frequently adopted for use in the dynamic backcalculation of the falling weight deflectometer (FWD) data are based on the solutions that utilise discrete transforms. In this paper, a new computational algorithm, namely ViscoWave, has been developed and implemented for modelling the pavement dynamics under the FWD impact load. The primary advantage of the proposed solution over some of the existing solutions is that it uses continuous integral transforms (Laplace and Hankel transforms) that are more appropriate for the FWD time histories whose signal characteristics are transient, non-periodic and truncated. Sample runs of the ViscoWave and the validation efforts presented in this paper showed that the proposed algorithm is capable of modelling the dynamics of a layered structure with elastic or viscoelastic material with or without a halfspace, indicating the potential of ViscoWave as a forward model for dynamic backcalculation of flexible pavement properties.

[1]  P. Cornille,et al.  Computation of Hankel Transforms , 1972 .

[2]  Kumbakonam R. Rajagopal,et al.  Mechanical Response of Polymers: An Introduction , 2000 .

[3]  J. S. Lai,et al.  Creep and Relaxation of Nonlinear Viscoelastic Materials , 2011 .

[4]  Reynaldo Roque,et al.  Obtaining Creep Compliance Parameters Accurately from Static or Cyclic Creep Tests , 2005 .

[5]  이재준 Modeling of Asphalt Concrete , 2014 .

[6]  Yang H. Huang,et al.  Pavement Analysis and Design , 1997 .

[7]  L H Irwin DETERMINATION OF PAVEMENT LAYER MODULI FROM SURFACE DEFLECTION DATA FOR PAVEMENT PERFORMANCE EVALUATION , 1977 .

[8]  R. Al-Khoury,et al.  Spectral element technique for efficient parameter identification of layered media; Part II; Inverse calculation , 2001 .

[9]  Bouzid Choubane,et al.  Construction of Dynamic Modulus Master Curves with Resilient Modulus and Creep Test Data , 2012 .

[10]  Karim Chatti,et al.  SAPSI-M : Computer program for analyzing asphalt concrete pavements under moving arbitrary loads , 1996 .

[11]  Nenad Gucunski,et al.  A Probabilistic Approach to Falling-Weight Deflectometer Backcalculation , 2007 .

[12]  J. Joseph,et al.  Fourier transforms , 2012 .

[13]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[14]  State of Florida Department of Transportation CONSTRUCTION OF DYNAMIC MODULUS MASTER CURVES USING RESILIENT MODULUS AND CREEP TEST DATA , 2011 .

[15]  Karim Chatti,et al.  Dynamic Time Domain Backcalculation of Layer Moduli, Damping, and Thicknesses in Flexible Pavements , 2004 .

[16]  Namho Kim,et al.  Determination of Shear and Bulk Moduli of Viscoelastic Solids from the Indirect Tension Creep Test , 2010 .

[17]  Robert L. Lytton,et al.  A MICROCOMPUTER BASED PROCEDURE FOR BACKCALCULATING LAYER MODULI FROM FWD DATA. INTERIM REPORT , 1988 .

[18]  R. Christensen,et al.  Theory of Viscoelasticity , 1971 .

[19]  Jaeseung Kim,et al.  Determination of Viscoelastic Poisson's Ratio and Creep Compliance from the Indirect Tension Test , 2009 .

[20]  Reynaldo Roque,et al.  EVALUATION OF SHRP INDIRECT TENSION TESTER TO MITIGATE CRACKING IN ASPHALT CONCRETE PAVEMENTS AND OVERLAYS , 1997 .

[21]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[22]  Karim Chatti,et al.  Backcalculation of Dynamic Modulus Mastercurve from Falling Weight Deflectometer Surface Deflections , 2011 .

[23]  Reynaldo Roque,et al.  Short-Loading-Time Stiffness from Creep, Resilient Modulus, and Strength Tests Using Superpave Indirect Tension Test , 1998 .

[24]  Arthur Beiser,et al.  Elastic Waves in Layered Media , 2015 .

[25]  Jaeseung Kim General Viscoelastic Solutions for Multilayered Systems Subjected to Static and Moving Loads , 2011 .

[26]  Kunihito Matsui,et al.  Wave Propagation Analysis for Flexible Pavements and Its Application to Backcalculation Analysis , 2011 .

[27]  Katharina Burger,et al.  Random Data Analysis And Measurement Procedures , 2016 .

[28]  R. Al-Khoury,et al.  Spectral element technique for efficient parameter identification of layered media. Part III: viscoelastic aspects , 2002 .

[29]  Stephen Anthony Rizzi A spectral analysis approach to wave propagation in layered solids , 1989 .

[30]  Simon GrenierS. Grenier,et al.  Backcalculation of Asphalt Concrete Layer Thickness Using Static and Dynamic Interpretations of FWD Tests , 2007 .

[31]  Dante Fratta,et al.  Introduction to Discrete Signals and Inverse Problems in Civil Engineering , 1998 .

[32]  J. Abate,et al.  Multi‐precision Laplace transform inversion , 2004 .

[33]  R. Al-Khoury,et al.  Spectral element technique for efficient parameter identification of layered media. I. Forward calculation , 2001 .

[34]  Gregory A. Sholar,et al.  Determination of Accurate Creep Compliance and Relaxation Modulus at a Single Temperature for Viscoelastic Solids , 2008 .

[35]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .